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STEP 3 Introduction

The total entry was an increase on that of 2023 by more than 10%. One question was
attempted by more than 98% of candidates, another two by about 80%, and another five by
between 50% and 70%.

The remaining four questions were attempted by between 5% and 30% of candidates, these
being from Section B: Mechanics, and Section C: Probability and Statistics, though the
Statistics questions were in general attempted more often and more successfully.

All questions were perfectly solved by some candidates.
About 84% of candidates attempted no more than 7 questions.



Question 1

This was comfortably both the most popular question and the most successful, with a mean
score of about 15/20. There were numerous correct methods employed to approach the
partial fractions. Every part had many excellent clear responses. Generally, if candidates
could do the partial fractions algorithm correctly and wrote more than the bare minimum
for the limiting and telescoping operations they got almost full marks.

In part (i), most could do the calculations correctly, though explanations less so.

In parts (ii) and (iii), many candidates did not attempt the correct decomposition.
Explanations of cancelling terms in the telescoping series and taking limits were frequently
not clear. Particular weaknesses were treating harmonic series as if they converged, and
substituting oo into expressions as if it were a number.

There were many clever ways of doing the last part without a full partial fraction
decomposition, but probably the cleanest was as follows.
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Question 2

Three quarters of the candidates attempted this question with a mean score of just under
half marks.

In part (i), candidates often omitted a justification that the LHS of the inequality was real and
for noting that both sides are positive before squaring.

Part (ii)(a) was generally done quite well, although some candidates ignored the suggested
method and argued that because the lead terms cancel as x — o, f(x) — 0, not earning full
marks.

The sketch in (ii)(b) was not generally done very well. In general, sketches just need to have
the same key features as the actual plot of the function. The asymptotes and symmetry
about x = 1 were crucial here.

Part (iii) was done fairly well by those that attempted it, most noticing that they should
choose values of m to ensure that the x> terms should cancel.

There were not many significant attempts on part (iv). To start, it was relatively
straightforward to state that as four critical values were required, the quadratic needed to
cross the x-axis, but this was often missed. However, there were some very efficient and
neat solutions to this part, and candidates who got on the right path initially executed it
well. The most common error was failure to get the four roots attached to the correctly
signed version of the quadratic. Candidates who used a diagram were generally much more
successful with this.



Question 3

The second most popular question, it was the eighth most successful with a mean score of a
little under 9/20.

Whilst some candidates did not make progress with differentiating f'in (iii), most
differentiated well in (i) and (iii).

However in (i), sufficient justification for the positive gradient for ¢ > %was often missing in

(a), and some occasionally forgot that inequalities reverse when divided by a negative
number in (b).

In part (ii), both sketch graphs were mostly drawn correctly. However, in part (a), many did
not justify the positive gradient or asymptote for large x. In part (b), whilst most found the
turning point correctly, few justified the positive gradient before the turning point.

The justifications, or otherwise, in (iii) varied a lot in the level of detail. Forgetting to mention
that > 0 was a common way that candidates did not achieve full marks.



Question 4

The fourth most popular question, it was the third most successful, with a mean score of 10
marks.

Part (i) needed more thoroughness than many attempts displayed. Most sensibly chose to
express the gradients as tangents of angles of the lines to the x-axis, but then did not define
these or consider the possible cases that could arise such as which was greater, or state that
the difference between the angles is +45° or 45°/135°. As the result was given in the
guestion, there was an expectation that there should be complete justification.

In part (ii), most attempts at the coordinates of the point of intersection were successful,
though many did not use the non-equality of p and ¢, and a large number got the y
coordinate wrong through substituting x into the equation of the parabola. Overall, many
did well with the final result of this part, employing the various results from earlier in the
part and that of (i).

Part (iii) proved challenging for most, and there was a fair amount of guesswork based on
the knowledge that 30°, 45° and 60° are angles with nice trigonometric values!



Question 5

This question was a little less popular than question 4 but was less successful with a mean
score of under 8/20.

The first part was very well-answered with some efficiently realising that elements not on
the leading diagonal did not need calculating. Sadly, some overlooked the second result
required.

Part (ii) was well-answered too, with the same efficiency as in (i) being employed by some.

Part (iii) was less well-answered, with the non-conjugate nature of matrix multiplication
often being overlooked, and in the last result treating 4, B, C, and D as constants. Applying
the scalar version of the chain rule to differentiate M? was not an uncommon error, but
those that answered this part successfully usually rewrote tr(M?) in terms of tr(M) and
det(M).

Part (iv) caused the most difficulty. Only a handful attempted to provide an explicit
counterexample to the statement. Some gave a counterexample that did not satisfy all the
conditions on M and N, and a larger number of students convinced themselves that there is
no good reason for the claim to hold, but did not give a counterexample. Some students
attempted to prove the claim was true. Due to this there were many more 17/20 solutions
than 18 or 19/20 solutions. Only 6 candidates achieved 20/20.



Question 6

This was the least popular of the Pure Mathematics section, and by a large margin the least
successful of the whole paper.

Those candidates who were successful in part (i)(a) usually tackled the question by re-

d(x—

writing the differential equation as dty) =-2(x - y). There were also some candidates who

. d d . . .
rewrote the equation as d—: + 2x = d—jt/ = 2y and used integrating factors effectively to solve

this, although some integrated erroneously to achieve x + 2xt = y + 2yt. Some candidates
correctly concluded that x = y but did not go on to say that this implied that xo=y0. Most of
the candidates gaining no credit for this question substituted x = y = 0 into their differential
equation and then integrated that.

In part (i)(b) those candidates who attempted it generally understood what was required,
but some did not appreciate that the situation in this case had different initial conditions to
that in part (a). Some candidates used the given differential equations to find a second
order differential equation in x or y, which was a valid if inefficient method.

Those attempting part (ii) generally performed in a similar way to part (i), either gaining
most of the credit available or making the same mistakes they had made in the previous
parts. There were some candidates who rather cleverly spotted that they could combine the
last two differential equations to show that y =z, and then show that x =z and in so doing
answer both parts (ii)(a) and (b) together.



Question 7

The third most popular question, this was a little less successfully attempted than question 2
with a mean score of just over 9/20.

Parts (i) and (ii) were not generally well done, as it was easy to guess the geometric series
and then make unsubstantiated, or at least unjustified, claims which could not be given full
marks.

In part (ii), there was frequently lack of clarity regarding pairing of terms and arguments
lacking in necessary detail to support the claims.

Part (iii) was done better, though the second result commonly saw 1/e¢ expanded as a
reciprocal rather than as e”!, and then, as a consequence, getting lost.

Part (iv), too, was fairly well done. There was a good understanding of contradiction
arguments for part (v), though there was difficulty in choosing a suitable » in quite a few
cases.



Question 8

One of the least popular questions in the Pure Mathematics section, candidates did slightly
less well here than on question 7. There were some excellent answers to this question, but
also some answers that were lacking in clear explanation. There were sometimes issues
with candidates not understanding the direction of implication required by the various
guestion parts. The best solutions used the structure of the question to help find
appropriate and efficient methods to solve the problem but there were also some inventive
solutions using other techniques.

Part (i) was generally done well, though some candidates did not show sufficient working to
justify the given answer fully.

Part (ii) was also generally done well, but some candidates did not take advantage of the
work done in the previous part to show that the given equation represented a pair of
straight lines. A small minority of candidates instead tried to show that if the equation
represented a pair of straight lines then k= 1.

Parts (iii) and (iv) were found to be more difficult.

In Part (iii) the most successful candidates tended to follow the lead of the previous parts
and factorised the equation in part (ii) to find the equations of two straight lines. A
considerable number of candidates made a sign error while doing this: expanding to check a
factorisation is correct is always a good idea. Those that factorised usually could see how to
set up two quadratic equations in x and so find a condition of s. Some candidates set up a
guartic equation in x but only a small number of these could complete an argument to show
that s <-0.75, and these candidates often were confused on the direction of implication
needed in this part.

The direction of implication required in part (iv) confused a lot of candidates, with some
stating that they had already answered this in the previous part and others repeating a proof
that four distinct points implies s <-0.75. Some other candidates recognised that there
must be two distinct points of intersection of the curves and each line but did not realise
that one of these points of intersection could be where both curves and both lines meet. A
sketch was often a good idea to help clarify the geometry of the situation. A handful of
candidates managed to consider the “if and only if” situation by considering where the two
straight lines were tangential to y = x? answering both of the last two parts in one go.



Question 9

This was an unpopular question, only being attempted by about a seventh of the candidates.
It was also the second least successful with a mean score of only 4/20. There were mixed
responses, and it mostly depended on how the diagram was set up, that is in which
directions candidates chose to label the velocities. Many candidates struggled to understand
how to apply the restitution law when the particles collide obliquely rather than directly
along the line of centres. Some tried to use total speeds of the particles rather than the
speeds along the line of contact, and some tried to use the horizontal speeds. Many also did
not use vectors correctly, drawing vectors in certain directions then not introducing
necessary negative signs.

Other than that, part (i) was done well and most understood how to rotate the solution back
into usual x-y directions.

Those who got to part (ii) generally did it easily.

Most found part (iii) trickier, and it tended to be either done well or not really started. Once
the diagram was set up, it was found to be straightforward, and most who got that far saw
how to proceed.

There were very few significant attempts at part (iv).



Question 10

This was the least popular question on the paper by some way, being attempted by fewer
than 6% of the candidates. It was attempted only a little more successfully than question 9
scoring a mean of about 5.5/20. Some of the few attempts were little more than a poor
diagram and nothing further. If it was setup correctly, the candidates did fairly well, despite
losing marks for not drawing everything required on the diagram, though there was some
leniency about drawing equal and opposite forces (e.g. the reaction force from the top cube
down onto the bottom cube). It should be stressed that very few did this so it could be a
point of focus when preparing candidates for STEP mechanics. The only common error
found once the first part was complete was mostly to do with reading carefully.

In part (iii), most did not check that the upper cube could not topple without the lower
toppling first, they just compared toppling of bottom cube and slipping.

The main challenge in this sort of question is in the initial setup, after which the techniques
required are not particularly difficult. Candidates who were able to interpret the context and
setup the situation usually did very well.



Question 11

Very nearly 30% of the candidates attempted this, making it the most popular non-Pure
guestion, and they did so relatively successfully with a mean score of nearly 11/20, better
than all but question 1. A significant number of candidates gained full or close to full credit.

Part (i) was generally well executed, although using r(zf) =02n+1-r) (Znirll—r) forr =

0 without justification was a common error.

In part (ii), a common error was using an incorrect probability distribution for the random
variable X, common examples included asserting that X itself was binomially distributed as

B (Zn, %), or asserting that either P(X = k) = 22%(2,:‘) orP(X =k) = 2% (2;) foralln <
k <2n.

Showing that 22% (27?) is a decreasing function of n in part (iii) was generally well executed; a

1 2n+2
22n+2 \ n+1

ratio, which lead to a largely similar, but slightly more involved, computation.

few students considered the difference between 22% (27?) and , rather than the

Part (iv) commonly saw candidates trying to maximise total expected winnings, rather than
expected winnings per pound. However generally the standard of responses to this question
was quite high.



Question 12.

A little over one fifth of the candidates attempted this, marginally less successfully than
guestion 11 with a mean score of 10 marks. As with question 11, a significant number of
candidates gained full or close to full credit. In the main, there was a dichotomy in student
responses: for each of the parts, students were generally either unable to make any real
progress with that part question or were able to produce a relatively full solution.

Parts (i) and (ii) were generally well done, although quite a common error was to incorrectly
differentiate the cumulative distribution function from (i) to find the probability distribution
required for (ii). Another quite common error was attempting to use integration by change

of variable rather than by parts to evaluate [ 72 cos™2(r~1) dr in (ii).

A number of students only attempted part (iii) of the question, in many of these cases,
gaining full or close to full marks. For this part, by far the most common approach was to
use the substitution r = cosh u to evaluate the integral. However, other solutions were also
seen. Various different substitutions were used either successfully, or at least in some way
productively, to evaluate the integral, includingr = secu ,r = cosecu,r = cothu, the
double substitution u = Vr? — 1 followed by u = sinh x , and the double substitution

r = sec u followed by x = sinu . However, it was an uncommon to see an unproductive
substitution suchasu =72 — 1.
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1. (i)
1 1+1_ 1
r+1 r r2 r2(r+1)

[r2—r(r+1)+ @+ 1)]

1
— 2 2 _
= —r*—r+r+1l=—F—-—<
TS LA Ty
*B1
Thus
N N N N
D EETD = T 2t o
rz(r+1) r+1 r r2
=1 r=1 r=1
N+1 N N
1 1 1
DR
r r r
r=2 r=1 r=1
M1
N
1+21
T N+1 r2
r=1
as required. *A1
So,as N - oo,
® N
LHS 2 ! L Lo dzl L,
- e d _—— —
e+’ N+1 T LT
r=1 r=1
and hence
- = 2_1
Zrz(r+1) 6”
r=1
*B1 (4)
1 A B Cc D

(i) rz(r+1)(r+2):; 2 rdl | re2
M1

1=Arr+ DT +2)+Br+1DT+2)+Cr?(r+2)+Dri(r+1)

1
=—21=-4D D=—-
" 4

3
r®terms 0=A+C+D A=—Z

M1 A1 (3)



Thus
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2. (i) (a)
\4x? —8x + 64 < |x+ 8|

4x% —8x + 64 < (x +8)%? = x? + 16x + 64

Thus
3x2—24x =3x(x—8) <0
M1
G1 or consideration of intervals M1
[Alternative method Solve for critical values
Sketch graph
So 0<x<8 A1 (3)
(b)
V4x? —8x + 64 < |3x— 8|
4x2% — 8x + 64 < (3x — 8)2 = 9x2? — 48x + 64
Thus

5x% —40x =5x(x —8) >0
M1

M1

G1]



GRAPH G1 or consideration of intervals M1

[Alternative method Solve for critical values

Sketch graph

So x<0orx=8 A1 (3)
(ii) (a)

(Jm +20x - 1))f(x)
= (Jm+2(x— 1)) (Jm_mc— 1))

=4x°> —8x+64—4x*>+8x—4 =60

fx) = =
N (VaxZ—8x+6a+2(x-1))

Thus

andso f(x) >0 as x > o

E1 (1)
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(b)

G2(2)
(iii) Require one criticalvalue 3,so0 3m+c = +5
M1
and as only one critical value choose m =2 andc = —1,or m=—2 andc =1

dM1 A1

Vax2 —5x+4 <|2x —1]|
4x2 —5x+4<(2x—1)? =4x? —4x+1

Giving x = 3 M1
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(iv) To obtain 4 critical values require quadratic to cross x axis and so
E1
x2+px+q=mx+c
has roots -5 and 7 giving p—m = -2 and q —c = —35
M1 A1
and
—(x?+px+q)=mx+c
hasroots 1 and5 giving p+m=—6 and gq+c=5
B1
Thus, p=—4,q=-15,m=-2, ¢ =20

A1

\ G1(6)



3. (i) (a)
xX+c xX+c

—m=ln(x+1)—lnx—m
dy 1 1_x(x+1)—(x+c)(2x+1)

dx x+1 «x x%(x + 1)2

y=g(x)=ln(1+%)

M1
(D) —x(e+ D2 —x(x+ 1)+ (x+c)(2x + 1)
B x?%(x + 1)?

_@c-Dx+c
o x2(x 4+ 1)2

A1
When ¢ > % asx>0,(2c—1)x =0 ,and ¢ > 0, so the numerator is positive and the
denominator is a non-zero square so also positive, so y = g(x) has positive gradient.
E1(3)
(b) y = g(x) has negative gradientfor 0 < ¢ <% ,if

2c—1Dx+c<0

Thatis
2c-—1Dx < —c
So
S -c
X 2c—1 1-2c
B1(1)
(i) (a)

If ¢ = % , then from (i) (a) the gradient is positive
E1
and we are given that g(x) » —o as x - 0.
The gradienttendstozeroasx - oo ,andto co as x - 0. E1

Also, g(x) > 0 as x »> . E1



G1(4)
(b)

If ¢c= % , then from (i)(b) the gradient is negative for x > % .

B1

Lo 1 - 1 .
The gradient is zero when x = 70 and positive when x < 70 and tending to zero as x — oo, and

to 0 as x - 0. B1
Again, we are given that g(x) - —o0 as x - 0,and g(x) - 0 as x - .

. . . . 1 1 3 . .
There is a turning point (maximum) at (E ,In3 -1 ) = (E ,lnz ) which is above the x-axis.

M1 A1

N

G1(5)



(iii)
x+c

re=(1+3)

1
ln(f(x)) =(x+c)ln (1 + ;)

Thus

f'(x) = fx)g(x)
M1A1(2)

Also, f(x) is positive for x > 0.

, SO

N |-

(a) As has been demonstrated in (i) (a) and (ii) (a), g(x) < 0 for x > 0 when ¢ >
f'(x) < 0 and fis a decreasing function. E1

(b) As has been demonstrated in (i) (b) and (ii) (b), g(x) = 0 forsome x >0 when 0 <c <%

so f'(x) = 0 for some x and f has a turning point. E1

(c) When c =0,
) =
gx) = x(x + 1)?
Is always negativeand - —o0 as x - 0,and - 0 as x > o
E1
whilst g(x) - o as x - 0,and g(x) -0 as x - o
so g(x) is positive forall x > 0, E1

thus f'(x) is too and thus f is an increasing function

forall x >0 E1 (5)



4. (i)

1 1
Suppose m; =tan#; and m, = tan#@,, where -5 < 0,0, < U then as the angle between

the lines s 45°,0; — 0, = £ m,0or £>m. M1

Therefore
tan(6; — 6,) = +1
and so
tan(6, — 6,) = tand, —tané, — 1
1+tan6;tanf,
M1
i.e.
my—m
1 -:mlrrfz =+l
*A1 (3)
(i)
4ay = x?
d
4a% = 2x
So the tangent at the point with x-coordinate p is
2
y -4 =5-(c=p)

4ay + p? = 2px
M1
The tangents 4ay + p? = 2px , 4ay + q® = 2qx meetwhen
20-x=p*-q*=@—-q)(p+q andas(p—q) # 0,
M1

1
x —E(P‘HI)
*A1

So

2 xl( +q) — p?

_ px5MBTq)—p pq
4a 4a
A1 (4)
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and if the tangents meet at 45° , then
P _4q
2 2a

1+

S

aq
ala
M1 M1

N

2a(p — q) = £(4a® + pq)
(4a® +pq)? = 4a*(p — q)* = 4a*((p + 9)* — 4pq)
M1
Thus the point of intersection satisfies
(4a? + 4ay)? = 4a?((2x)? — 16ay)
M1
That simplifies to
(a+y)? =x%—4ay
y? + 6ay + a? = x?
y? + 6ay + 9a? = x? + 8a?
(y +3a)? = x? + 8a?
M1 *A1 (6)

(iii)

(v + 7a)? = 48a? + 3x?

(% + 7a)2

2
= 48a% + 3 <% » + q))
M1
(pq + 28a?)? = 768a* + 12a>(p + q)*
p%q? + 56a%pq + 784a* = 768a* + 12a*(p — q)? + 48a’pq
M1
p%q? + 8a’pq + 16a* = 12a%(p — q)*
M1 A1

(pq + 4a®)? = 3(2a(p — )’

P _4q
2a  2a _+i
P9 —3
1+2a2a
M1 A1

Thus the tangents are at a constant angle to each other which is 30° . A1 (7)



5. (i)

Let

v=(g 1
= (D 1=ty o Ta

(e f\ra b\ _(eatfc eb+fd
NM_(g h)(c d)_(ga+hc gb+hd)
tr(MN) =ae+bg+cf+dh=ea+gb+ fc+hd

=ea+ fc+gb+ hd =tr(NM)
M1A1

tr(M+N)=tr((? Z)+(2 £>>=tr(?i_§ 2i£)=a+e+d+h

=a+d+e+h=tr(M)+tr(N)
B1(3)

(i)
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detMa(detM) - ad — bc
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(iii)
aM
tr (M‘1E> =tr(M~Y(MN — NM)) = tr(M™*MN — M~*NM) = tr(N) — tr(NMM™1) = 0
Thus

1 4 (detM) =0
detMde ¢ B

and sodet M isindependentof t

E1

d o dMy B B
a(tr(M)) =tr (E) =tr(MN — NM) = tr(MN) — tr(NM) = 0

so tr(M) isindependent of t

E1



2y a by(a b)\_ <a2+bc ab+bd>= 2 2
tr(M=) tr((c d)(c d)> tr ac+cd  be+ d? a*+bc+bc+d
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M1 A1

Therefore
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T “ar e et =

and so tr(M?) is independent of t

E1 (5)
am
— =MN - NM
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So
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M1 A1
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and as
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M1
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(iv) If
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6. (i) (a)

dx
—=-x+3y+u

dt
d
d—}tl=x+y+u
dx dy dx-y)
adac T @ wY)
M1
x—y=Ae %
A1

If x=y=0 atsometime t > 0,then A =0,A1
so considering t = 0, xy — ¥y = 0 which gives the required result. E1 (4)

(b) If xo =y5,thenatt=0,x—y =0 so A=0 andhence x =y forall t

E1
Thus
dx 2x +
—=2x+4+u
dt
dx )
——2x=u
dt
e‘th—x —2e %ty =2ty
dt
-2t 1 -2t
e 'x=—=—e “"u+c
2
1
x=—=u+ce?
2
M1 A1
t=0, x=x9 so x0=—%u+c andwewant x =0 when t =T
S0
1
0=—-u+ce?T
2
Thus ¢ = lue‘ZT,xo = —Lyu4+lye?r
2 2 2
and hence,

2xqe2T
YE et

dM1 A1 (5)



(i) (a)

dx dy dz dx—-2y+z)
E—ZE'F%—T——(DC—Z}/'{'Z)

Thus
x—2y+z=Ae"t
M1 A1

If x=y=2z=0 atsometime t > 0,then A =0,soconsidering t =0,xq—2yy+27=0
which gives the required result. E1 (3)

(b) we know from (a) thatifx =y =2z =0 atsometime t > 0,then A =0, andso

x—2y+z=0or2y=x+z E1
Thus
dx—Z 3z +
P X z4+u
and
dZ_ N
a - zZ4+u
So
dx dz

d
E—E=E(x—z)=2(x—z)

and so
x —z = Be?
M1 A1
Butas x =z =0 atsometime t >0, B=0 andso x =z forall t
andthus x =y =2z forall ¢t

Hence
Xo = Yo = 2o

E1(4)



(c)
Given
Xo =Yo = 2o
we know that (a) and (b) apply (as similarly in (i), so
dz

——=—ZzZ+u
dt

M1
Thus

z=u+cet

A1

t=0,z=zys0zy=u+c and 0 =u+ce™ T

dM1

A1(4)



7. (i) Eachterm of f(n) > 0 so their sum s too.

E1
1 1 1 1 _ 1/n+1 1
(n+1)(n+2)...(n+r) B (n+1)r SO f(n) (n+1)(n+2) o< n+1 + (n+1)2 + - 1_1/n+1 T n
M1 A1(3)

Thus 0 < f(n) <%

1 1 1
n+1 (n+D)(n+2) >0, (m+D)(+2)(n+3)  (n+1)(n+2)(n+3)(n+4)

(ii) >0 ,etc so g(n)>0

M1 A1

1 1 1 1
AlSO, oD~ Dm0 D mi D) D e mr s -~ O €t

so g(n) = ﬁ —a sum of positive terms <ﬁ M1 A1 (4)

1
Thus 0 < g(n) < —

(iii)
(2n)le — f(2n)
—(2n)'(1+1+1+1+ - L _ ! - ! -
2! 3l 2n+1 (2n+1)(2n+2) (@2n+1)2n+2)2n+3)
M1 A1

| 1 1
= (2n)! (1+1+2,+ +(2n)')

2n)! (2n)! 1 1 1
on+ Dl T @n+ ) T T A1l @it Den+2) @n+D@n+D)@n+3)

—(2n)'(1+1+1+ o+ 1)
27

which is an integer. M1 A1(4)



@ +g(2n) = 2n)!e t + g(2n)

=(2n)!<1—1+i—l+-~-)+ L ! + ! —
217 3] 2n+1 2n+D@2n+2)  Zn+ )2n+2)(2n+3)
M1 A1
1 1
=QM(LJ+Z+W+QMJ
(2n)! (2n)! 1 1 1

T+ D T Tyl e D@n+2) T Gn+Den+@n+3)

| 1 1
=(2n)(1——14—5?+~-+(2n)0

M1 A1 (4)

which is an integer.

(iv) g((2n)le — f(2n)) is anintegerasis p (@ + g(Zn))

Thus (p (@ + g(2n))) — (q((2n)!e — f(2n))) is an integer.

(,, (G2 g(Zn))> - (a(@mte - £@m)) = @3- ge) +pg@n) +af 2n)
M1

=pg(2n) + qf (2n)
so pg(2n) + qf (2n) is an integer as required. A1(2)

(v) As (iv) is true for all positive integers n, it must be true for n = max (p, q)

By (”) pg(zn) < an+1 = Znn+1 %
By (i) af2n) < L< ==

M1
Therefore, pg(2n) + qf (2n) < %+ % =1

and trivially by (i) and (ii)
pg(2n) + qf(2n) >0
A1

This means that pg(2n) + qf (2n) cannot be an integer which contradicts the result of (iv)

and hence there are no integers such that S = qe ,thatis such that s =e? andso e?is
irrational. E1 (3)



8. () w—x+3)(y+x—-5)=0ifandonlyifeither y—x+3=0o0r y+x—5=0. These
are the equations of two straight lines with gradients 1 and -1.

E1
A pair of straight lines with gradients 1 and -1 can be expressedas y —x +a = 0 and
y+x+b=0. Thus (y —x+a)(y + x + b) = 0 can be expressed
y2—x2+py+qx+r=0ifandonlyifa+b=p,a—b=gq,and ab=7r. M1A1
Hence, a = %(p +q), b= %(p —q) and so %(p + q)%(p —q) = r which can be written

Z_q?=4r. M1 *A1 (5)

(ii) If a point (x,y) lieson C; ,then x = y? + 2sy + s(s + 1) = 0 which can be rearranged as
y2+2sy+s(s+1)—x=0. Ifapoint (x,y) lieson C,,then y = x? which can be expressed
as k(y —x?%) = 0 forany real number k. Thus, if it lies on both

y? +2sy+s(s+1)—x+ k(y —x?) = 0 forany real number k

E1E1
fk=1,
y2—x2+2s+1Dy—x+s(s+1)=0
and
(2s+1)2—(-1)>=4s2+4s=4s(s+ 1)
satisfying the condition as derived in (i). M1 A1 (4)

(iii) If C; and C, intersect at four distinct points, then they do so on the pair of straight lines,
y2—x2+@2s+1D)y—x+s(s+1)=0.

E1
y2—x?2+2s+1Dy—x+s(s+1)=@y+x+s+1)(y—x+5) B1

Therefore, y + x + s + 1 = 0 must meet C, at two distinct pointsand y — x + s = 0 must meet
C, at two different distinct points. E1

Thus, solving x2 + x + s + 1 = 0 having two distinct roots, the discriminant 1 — 4(s + 1) > 0

Thatis s < —> M1 A1
and solving x? — x + s = 0 having two distinct roots, the discriminant1 — 4s > 0 i.e. s < %

Soitis necessary that s < —%. *A1 (6)



(iv) If s < —% for C; and C, to intersect at four points, they do so on the pair of straight lines,

two distinct on each of the lines in (iii) as shown by the non-zero discriminants in (iii) and that
will be four distinct points provided that the point of intersection of the two lines is not one of
them. E1 E1

The intersection of

y+x+s+1=0and y—x+s=0 isat (—%,—25;1) which will only lie on C, if

2
— 2 = (=2)” thatisits = — which s prohibited. M1 A1 E1 (5)



G1 (1)

(i) Conserving momentum in the direction of the line of centres
mucosa = mx cosa —mysina + mv

thatis

ucosa = (xcosa —ysina) + v M1

Newton’s experimental law of impact in the same direction gives
v—(xcosa—ysina) = Fucosa

Solving, (xcosa —ysina) = %u cosa (A)
M1
Conserving momentum perpendicular to the direction of the line of centres
M1
musina = m(xsina + y cos a)
thatis
(xsina + ycosa) = usina (B)
Solving equations A and B simultaneously:-
Acosa + Bsina gives x =u Gcos2 a + sin? a) = %u(l + 2sin? @)

. . 2.
Bcosa — Asina gives y =jusinacosa M1

—1u(1 + 2sin%a)

Thus the velocity of B after the collision is 32 as required.

gu sina cosa

*A1 (5)



Alternative for part (i)

G1(1)
Conserving momentum in the direction of the line of centres
mucosa = mx + mw
Thatis ucosa=x+w
M1

Newton’s experimental law of impact in the same direction gives

1
W—x=§ucosa

Solving, x = %u cosa
M1

Conserving momentum perpendicular to the direction of the line of centres

M1

musina = my

thatis
y=usina
Thus the velocity of B after the collision is
1 . . 1 .
—jucosacosa —usinasina —Eu(1+251n2a)

1 = 2 as required. M1 *A1 (5)
usina@cosa —-ucosasina Jusinacosa



(ii) The lowest point of sphere B (which is vertically below its centre) crosses the y axis at atime
2rcosa

%u(l + 2sin? a)
after the collision. B1

Thus it crosses the y axis at a point

2rcosa

2
2rsina+—usinacosa1 =2r<sina+cosa
§u(1 + 2sin? a)

2 sin a cos a)
1+ 2sin?

M1

2sinacosa

from the origin, thatis at (0,Y) where Y = 2r(sina + cosatanf) andtanf = Ty

*A1 (3)

Alternatively, after the collision sphere B moves at an angle S above the negative x axis, where

2sinacosa
tan =
’8 1+2sin2 a

distance 2rcos a tan 8 further in the y direction than the point it is at when the collision occurs
which had ay coordinate 2rsina .

(iii) 4

(from the velocity of B in (i)) and so by trigonometry, the lowest point will be a

v

G1

By trigonometry, the distance between the lowest points of spheres B and C when their lowest
points are on the y axis must be more than 2r sec § so to avoid any contact,h > Y + 2rsecf .

E1(2)



(iv)

(sinacosf + cosasinB) = 2rsecf sin(a + B) < 2rsecf

2r
cosf

Y =2r(sina + cosatanf) =

assinfa+p) <1 M1 A1

But, a + 8 + g because expression (A) in (i) cannot be zero, or alternatively, tanf = %
would give a contradiction. Thus Y < 2rsecf E1 (3)

So, from this result and (iii) there will be no striking if h > 4r sec 8 B1

The greatest value of sec 8 occurs when tan 8 is greatest. E1

2 sin a cos a) (1 + 2sin? a)2(cos? a — sin? @) — 2 sina cos a 4 sina cos a

d d
—(t -
da( an §) da(l + 2sin? a (1 + 2sin? a)?

Numerator = (1 + 252)2(1 — 252) — 8s%(1 — s%) = 2 — 8s? M1 A1
where s = sina

. N . 1 1 2
Thus, the differential is zero when sina = > then tanf = N andsecf = NG M1

8r

5 *A1 (6)

Thus, no collision occurs for any value of «aif h >



10. (i)

3 '

) R
: e

\‘—3—‘1

y ¢

G1

A Resolving vertically for the upper cube R = pa3g
B Taking moments for the upper cube about X Ph = Rx
C Resolving horizontally for the uppercube P = F

M1 A1
D Resolving vertically for the lower cube R’ =R + pg
E Taking moments for the lower cube aboutY R'y = F + Rx
F Resolving horizontally for the lower cube F = F’

M1 A1

Combining Aand B x = —=

a3y which is the second requirement. B1

Combining A and D (or resolving vertically for the whole system) R’ = pg(1 + a®)

Combining thiswithEand C pg(1 +a3)y =P + Ph

P(1+h)
(1+a3)pg

which gives y = as required. M1 *A1 (8)

(i) The limiting friction for F = uR whereas for F' = uR' = uR + upg > uR

Given thatin equilibrium F = F' = P, as P increases, F will attain its limiting value first and
hence the upper cube will slip on the lower cube. E1 (1)



(iii) For a = 1 the upper cube slips on the lower cube if P = upg , B1

L9

y=% WhenP=1+h

andx=lwhenP=ﬂandash<1,2h<1+h,so&>ﬂ M1
2 2h 2h 7 1+h

Thus equilibrium is broken either by the upper cube slipping if upg < % or by both toppling

togetherif uypg > % M1
Thatis upper slipsif (1 + h) <1 orbothtoppleif u(1+ h) > 1 asrequired. *A1 (4)

(iv) For a <1 and no slipping occurring,

1 pg(1+a®
y= E when P = ﬁ B1
4
and x = ~a when P =24~ B1
2 2h
4 3
So equilibrium will be broken by the upper cube toppling if pgs < pg((ll:))

Thatisif (1+ h)a* < h(1+ a®) , which can be rearranged to h(1 + a®(1 — a)) > a* E1(3)
(v) If @ =3, for (iv) to occur h > . B

3 so that the top cube doesn’t slip. M1

4
We also require h < a and, in addition, % < upga
Thus, hu >% . A1

3
E.G.h—g,/.l—

| w

(choosing h larger than % to enable a feasible value of i to be chosen.)

B1(4)



11. (i)

2ny\ _ (2n)! _ (2n)!
()= == T G i =

M1 M1 *A1 (3)

=(2n—r+1)(

So

S =3 Y o)

M1

2n

:Z(Zn—r+1)(2n+2711_r)+ Z r(Zrn)

r=n+1
M1

2n 2n

= 2, () 2, ()

by changing the index in the first summationto t =2n—r +1 M1 A1

2n
_ 2n
=22, 7(7)
*A1 (5)
(ii)
E(X)ﬂi:@:) 3) a3

M1 A1

using the result of (i) M1 A1

But,

. . . 1 . 1 .
is the expectation of a Bi (Zn, 5) random variable and so = 2n X 5 =n,orusing the second

result given in the stem M1 A1

Thus EX)=n+n (27?) (%)Zn =n <1 + G)Zn (2:)>

as required. *A1(7)

2n

2n+1—-r

)



(iii)

(1)2'”2 (Zn + 2)
2 n+1 1 (2n + 2)! nin!  (2n+2)2n+1) 2n+1

G

SR mI DI+ D) 2ot D+l 2+ D)
M1 A1

2n
and so G) (27:1) decreases as n increases. E1(3)

(1460 D) nen o
LR ey

(iv) The expected profit per pound paid = " > "

So, by the result of (iii), choose n = 1. A1(2)

(If winnings not profit, then logic is identical bar plus 1. Either permissible)



12. (i)

|z
|=
|

0A=1,0C=r,s0 AC=VrZ—1 andtherefore area OAC = ODF = 212 — 1
Also, angle BOC = DOE = cos‘1% so area sector COD = %m’z -2 %rz cos‘1% M1 M1

Thus, P(R < 1) = area OACDF =Vr?2 — 1+ %m‘z —r?2cos™'r~twhen 1 <7 < V2 *A1

P(R<r)=area OGH = %m‘z when 0 <r <1 B1(4)

(i) If the pdf of Ris f(r), then differentiating,

1
f@) = mr
for0<r<1,

and using

1
+—mr—2rcos tr 11— =—qr — 2rcos”

r
Vrz—1 2 rz—1 2

1,.-1

f@r)=

r



for1<r<+2. M1 A1 (3)

Thus
19 V2
E(R)=f —mr? dr+f —nr? —2r?cos™lrtdr
0o 2 1 2
M1 A1ft
N7 V2 NG
1 2 2 1
=[—T[T‘3] —[—r3cos 11"‘1] +J —r3 dr
6 0 3 1 1 3 rrz-1
M1 A1
2 w2 Jﬁz , 1
= - —-r dr
3 3 ;3 2 —
as required. *A1 (5)
(iii)
Let
I f T4
= T
Vrz—1
Then
r r2 -1
I=fr dr =ryr? — —J\/rz—ldr=r\/r2—1—f dr
Vrz —1 Vrz —1
M1 M1
=7r{r2— —f dr+f dr=r\/r2—1—l+cosh_1r+c
Vrz — Vrz —
M1 M1
So
1 1
=—(r\/r2—1+cosh‘1r+c)=—(r\/r2—1+ln(r+ r2—1)+c)
2 2
A1 (5)
Hence

E(R)——X x[r\/rz +ln(r+ r? — )]f=%(\/§+ln(\/§+1))

M1 A1ft *A1 (3)
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