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STEP 3 Introduction 

The total entry was an increase on that of 2023 by more than 10%.  One question was 
attempted by more than 98% of candidates, another two by about 80%, and another five by 
between 50% and 70%.   
 
The remaining four questions were attempted by between 5% and 30% of candidates, these 
being from Section B: Mechanics, and Section C: Probability and Statistics, though the 
Statistics questions were in general attempted more often and more successfully.  

All questions were perfectly solved by some candidates.   
About 84% of candidates attempted no more than 7 questions. 

  



Question 1 

This was comfortably both the most popular question and the most successful, with a mean 
score of about 15/20.  There were numerous correct methods employed to approach the 
partial fractions.  Every part had many excellent clear responses. Generally, if candidates 
could do the partial fractions algorithm correctly and wrote more than the bare minimum 
for the limiting and telescoping operations they got almost full marks.   

In part (i), most could do the calculations correctly, though explanations less so.  

In parts (ii) and (iii), many candidates did not attempt the correct decomposition. 
Explanations of cancelling terms in the telescoping series and taking limits were frequently 
not clear. Particular weaknesses were treating harmonic series as if they converged, and 
substituting  ∞ into expressions as if it were a number.   

There were many clever ways of doing the last part without a full partial fraction 
decomposition, but probably the cleanest was as follows. 
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Question 2 

Three quarters of the candidates attempted this question with a mean score of just under 
half marks. 

In part (i), candidates often omitted a justification that the LHS of the inequality was real and 
for noting that both sides are positive before squaring.   

Part (ii)(a) was generally done quite well, although some candidates ignored the suggested 
method and argued that because the lead terms cancel as 𝑥𝑥 → ∞ , f(𝑥𝑥) → 0, not earning full 
marks.   

The sketch in (ii)(b) was not generally done very well. In general, sketches just need to have 
the same key features as the actual plot of the function. The asymptotes and symmetry 
about 𝑥𝑥 = 1 were crucial here.   

Part (iii) was done fairly well by those that attempted it, most noticing that they should 
choose values of m to ensure that the x2 terms should cancel.   

There were not many significant attempts on part (iv). To start, it was relatively 
straightforward to state that as four critical values were required, the quadratic needed to 
cross the x-axis, but this was often missed.  However, there were some very efficient and 
neat solutions to this part, and candidates who got on the right path initially executed it 
well. The most common error was failure to get the four roots attached to the correctly 
signed version of the quadratic. Candidates who used a diagram were generally much more 
successful with this. 

 

 

 

 

  



Question 3 

The second most popular question, it was the eighth most successful with a mean score of a 
little under 9/20.  

Whilst some candidates did not make progress with differentiating f in (iii), most 
differentiated well in (i) and (iii).   

However in (i), sufficient justification for the positive gradient for 𝑐𝑐 ≥ 1
2
 was often missing in 

(a), and some occasionally forgot that inequalities reverse when divided by a negative 
number in (b).   

In part (ii), both sketch graphs were mostly drawn correctly.  However, in part (a), many did 
not justify the positive gradient or asymptote for large x. In part (b), whilst most found the 
turning point correctly, few justified the positive gradient before the turning point.   

The justifications, or otherwise, in (iii) varied a lot in the level of detail. Forgetting to mention 
that f > 0 was a common way that candidates did not achieve full marks.  

  



Question 4   

The fourth most popular question, it was the third most successful, with a mean score of 10 
marks.   

Part (i) needed more thoroughness than many attempts displayed.  Most sensibly chose to 
express the gradients as tangents of angles of the lines to the x-axis, but then did not define 
these or consider the possible cases that could arise such as which was greater, or state that 
the difference between the angles is ±45° or 45°/135°.  As the result was given in the 
question, there was an expectation that there should be complete justification.   

In part (ii), most attempts at the coordinates of the point of intersection were successful, 
though many did not use the non-equality of p and q, and a large number got the y 
coordinate wrong through substituting x into the equation of the parabola.  Overall, many 
did well with the final result of this part, employing the various results from earlier in the 
part and that of (i).   

Part (iii) proved challenging for most, and there was a fair amount of guesswork based on 
the knowledge that 30°, 45° and 60° are angles with nice trigonometric values! 

 

  



Question 5   

This question was a little less popular than question 4 but was less successful with a mean 
score of under 8/20.   

The first part was very well-answered with some efficiently realising that elements not on 
the leading diagonal did not need calculating.  Sadly, some overlooked the second result 
required.   

Part (ii) was well-answered too, with the same efficiency as in (i) being employed by some.   

Part (iii) was less well-answered, with the non-conjugate nature of matrix multiplication 
often being overlooked, and in the last result treating A, B, C, and D as constants.  Applying 
the scalar version of the chain rule to differentiate  M2  was not an uncommon error, but 
those that answered this part successfully usually rewrote tr(M2)  in terms of tr(M) and 
det(M).   

Part (iv) caused the most difficulty. Only a handful attempted to provide an explicit 
counterexample to the statement. Some gave a counterexample that did not satisfy all the 
conditions on M and N, and a larger number of students convinced themselves that there is 
no good reason for the claim to hold, but did not give a counterexample. Some students 
attempted to prove the claim was true. Due to this there were many more 17/20 solutions 
than 18 or 19/20 solutions. Only 6 candidates achieved 20/20. 

 

  



Question 6 

This was the least popular of the Pure Mathematics section, and by a large margin the least 
successful of the whole paper.   

Those candidates who were successful in part (i)(a) usually tackled the question by re-

writing the differential equation as d(𝑥𝑥−𝑦𝑦)
d𝑡𝑡

 = -2(x - y).  There were also some candidates who 

rewrote the equation as d𝑥𝑥
d𝑡𝑡

+ 2𝑥𝑥 =  d𝑦𝑦
d𝑡𝑡

= 2𝑦𝑦 and used integrating factors effectively to solve 
this, although some integrated erroneously to achieve 𝑥𝑥 + 2𝑥𝑥𝑥𝑥 = 𝑦𝑦 + 2𝑦𝑦𝑦𝑦.  Some candidates 
correctly concluded that x = y but did not go on to say that this implied that x0 = y0.  Most of 
the candidates gaining no credit for this question substituted x = y = 0 into their differential 
equation and then integrated that. 

In part (i)(b) those candidates who attempted it generally understood what was required, 
but some did not appreciate that the situation in this case had different initial conditions to 
that in part (a).  Some candidates used the given differential equations to find a second 
order differential equation in x or y, which was a valid if inefficient method. 

Those attempting part (ii) generally performed in a similar way to part (i), either gaining 
most of the credit available or making the same mistakes they had made in the previous 
parts.  There were some candidates who rather cleverly spotted that they could combine the 
last two differential equations to show that y = z, and then show that x = z and in so doing 
answer both parts (ii)(a) and (b) together. 

  



Question 7 

The third most popular question, this was a little less successfully attempted than question 2 
with a mean score of just over 9/20.  

Parts (i) and (ii) were not generally well done, as it was easy to guess the geometric series 
and then make unsubstantiated, or at least unjustified, claims which could not be given full 
marks.  

In part (ii), there was frequently lack of clarity regarding pairing of terms and arguments 
lacking in necessary detail to support the claims.   

Part (iii) was done better, though the second result commonly saw 1/e expanded as a 
reciprocal rather than as e-1, and then, as a consequence, getting lost.   

Part (iv), too, was fairly well done.  There was a good understanding of contradiction 
arguments for part (v), though there was difficulty in choosing a suitable n in quite a few 
cases. 

  



Question 8 

One of the least popular questions in the Pure Mathematics section, candidates did slightly 
less well here than on question 7.  There were some excellent answers to this question, but 
also some answers that were lacking in clear explanation.  There were sometimes issues 
with candidates not understanding the direction of implication required by the various 
question parts.  The best solutions used the structure of the question to help find 
appropriate and efficient methods to solve the problem but there were also some inventive 
solutions using other techniques.   

Part (i) was generally done well, though some candidates did not show sufficient working to 
justify the given answer fully.   

Part (ii) was also generally done well, but some candidates did not take advantage of the 
work done in the previous part to show that the given equation represented a pair of 
straight lines.  A small minority of candidates instead tried to show that if the equation 
represented a pair of straight lines then k = 1.   

Parts (iii) and (iv) were found to be more difficult.  

In Part (iii) the most successful candidates tended to follow the lead of the previous parts 
and factorised the equation in part (ii) to find the equations of two straight lines.  A 
considerable number of candidates made a sign error while doing this: expanding to check a 
factorisation is correct is always a good idea.  Those that factorised usually could see how to 
set up two quadratic equations in x and so find a condition of s.  Some candidates set up a 
quartic equation in x but only a small number of these could complete an argument to show 
that s < -0.75, and these candidates often were confused on the direction of implication 
needed in this part.   

The direction of implication required in part (iv) confused a lot of candidates, with some 
stating that they had already answered this in the previous part and others repeating a proof 
that four distinct points implies s < -0.75.  Some other candidates recognised that there 
must be two distinct points of intersection of the curves and each line but did not realise 
that one of these points of intersection could be where both curves and both lines meet.  A 
sketch was often a good idea to help clarify the geometry of the situation.    A handful of 
candidates managed to consider the “if and only if” situation by considering where the two 
straight lines were tangential to y = x2 answering both of the last two parts in one go. 

 

  



Question 9 

This was an unpopular question, only being attempted by about a seventh of the candidates.  
It was also the second least successful with a mean score of only 4/20.  There were mixed 
responses, and it mostly depended on how the diagram was set up, that is in which 
directions candidates chose to label the velocities. Many candidates struggled to understand 
how to apply the restitution law when the particles collide obliquely rather than directly 
along the line of centres.  Some tried to use total speeds of the particles rather than the 
speeds along the line of contact, and some tried to use the horizontal speeds.  Many also did 
not use vectors correctly, drawing vectors in certain directions then not introducing 
necessary negative signs.    

Other than that, part (i) was done well and most understood how to rotate the solution back 
into usual x-y directions.   

Those who got to part (ii) generally did it easily.   

Most found part (iii) trickier, and it tended to be either done well or not really started.  Once 
the diagram was set up, it was found to be straightforward, and most who got that far saw 
how to proceed.   

There were very few significant attempts at part (iv). 

  



Question 10 

This was the least popular question on the paper by some way, being attempted by fewer 
than 6% of the candidates.  It was attempted only a little more successfully than question 9 
scoring a mean of about 5.5/20. Some of the few attempts were little more than a poor 
diagram and nothing further.  If it was setup correctly, the candidates did fairly well, despite 
losing marks for not drawing everything required on the diagram, though there was some 
leniency about drawing equal and opposite forces (e.g. the reaction force from the top cube 
down onto the bottom cube). It should be stressed that very few did this so it could be a 
point of focus when preparing candidates for STEP mechanics.  The only common error 
found once the first part was complete was mostly to do with reading carefully.   

In part (iii), most did not check that the upper cube could not topple without the lower 
toppling first, they just compared toppling of bottom cube and slipping. 

The main challenge in this sort of question is in the initial setup, after which the techniques 
required are not particularly difficult. Candidates who were able to interpret the context and 
setup the situation usually did very well. 

 

  



Question 11 

Very nearly 30% of the candidates attempted this, making it the most popular non-Pure 
question, and they did so relatively successfully with a mean score of nearly 11/20, better 
than all but question 1.  A significant number of candidates gained full or close to full credit.   

Part (i) was generally well executed, although using 𝑟𝑟�2𝑛𝑛𝑟𝑟 � = (2𝑛𝑛 + 1 − 𝑟𝑟)� 2𝑛𝑛
2𝑛𝑛+1−𝑟𝑟� for 𝑟𝑟 =

 0 without justification was a common error.   

In part (ii), a common error was using an incorrect probability distribution for the random 
variable X, common examples included asserting that X itself was binomially distributed as 

B �2𝑛𝑛, 1
2
�, or asserting that either P(𝑋𝑋 = 𝑘𝑘) = 1

22𝑛𝑛
�2𝑛𝑛𝑘𝑘 � or P(𝑋𝑋 = 𝑘𝑘) = 2

22𝑛𝑛
�2𝑛𝑛𝑘𝑘 � for all 𝑛𝑛 ≤

𝑘𝑘 ≤ 2𝑛𝑛 .   

Showing that 1
22𝑛𝑛

�2𝑛𝑛𝑛𝑛 � is a decreasing function of 𝑛𝑛 in part (iii) was generally well executed; a 

few students considered the difference between 1
22𝑛𝑛

�2𝑛𝑛𝑛𝑛 � and 1
22𝑛𝑛+2

�2𝑛𝑛+2𝑛𝑛+1 �, rather than the 
ratio, which lead to a largely similar, but slightly more involved, computation.   

Part (iv) commonly saw candidates trying to maximise total expected winnings, rather than 
expected winnings per pound.  However generally the standard of responses to this question 
was quite high. 

  



Question 12. 

A little over one fifth of the candidates attempted this, marginally less successfully than 
question 11 with a mean score of 10 marks.  As with question 11, a significant number of 
candidates gained full or close to full credit.  In the main, there was a dichotomy in student 
responses: for each of the parts, students were generally either unable to make any real 
progress with that part question or were able to produce a relatively full solution.   

Parts (i) and (ii) were generally well done, although quite a common error was to incorrectly 
differentiate the cumulative distribution function from (i) to find the probability distribution 
required for (ii).  Another quite common error was attempting to use integration by change 
of variable rather than by parts to evaluate ∫ 𝑟𝑟2 𝑐𝑐𝑐𝑐𝑐𝑐−2(𝑟𝑟−1)𝑑𝑑𝑑𝑑 in (ii).   

A number of students only attempted part (iii) of the question, in many of these cases, 
gaining full or close to full marks.  For this part, by far the most common approach was to 
use the substitution 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑢𝑢 to evaluate the integral.  However, other solutions were also 
seen.  Various different substitutions were used either successfully, or at least in some way 
productively, to evaluate the integral, including 𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢 , 𝑟𝑟 = cosec 𝑢𝑢 , 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑢𝑢 , the 
double substitution 𝑢𝑢 = √𝑟𝑟2 − 1 followed by 𝑢𝑢 = 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑥𝑥 , and the double substitution  
𝑟𝑟 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢 followed by 𝑥𝑥 = 𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢 .  However, it was an uncommon to see an unproductive 
substitution such as 𝑢𝑢 = 𝑟𝑟2 − 1 . 
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𝑁𝑁

𝑟𝑟=1

 

      M1 

= −2 +
2

𝑁𝑁 + 1
+ 2�

1
𝑟𝑟2

𝑁𝑁

𝑟𝑟=1

− 1 +
1

(𝑁𝑁 + 1)2 

That is 

�
1

𝑟𝑟2(𝑟𝑟 + 1)2 = 2𝑆𝑆𝑁𝑁 − 3 +
2

𝑁𝑁 + 1
+

1
(𝑁𝑁 + 1)2

𝑁𝑁

𝑟𝑟=1

 

      A1 

From part (i), 

�
1

𝑟𝑟2(𝑟𝑟 + 1) =
𝑁𝑁

𝑟𝑟=1

1
𝑁𝑁 + 1

− 1 + �
1
𝑟𝑟2

𝑁𝑁

𝑟𝑟=1

= 𝑆𝑆𝑁𝑁 − 1 +
1

𝑁𝑁 + 1
 

Thus 

�
1

𝑟𝑟2(𝑟𝑟 + 1)2 = 2��
1

𝑟𝑟2(𝑟𝑟 + 1) + 1 −
𝑁𝑁

𝑟𝑟=1

1
𝑁𝑁 + 1

� − 3 +
2

𝑁𝑁 + 1
+

1
(𝑁𝑁 + 1)2

𝑁𝑁

𝑟𝑟=1

 

      M1 

= 2�
1

𝑟𝑟2(𝑟𝑟 + 1) − 1 +
1

(𝑁𝑁 + 1)2

𝑁𝑁

𝑟𝑟=1

 

      A1 

Letting  𝑁𝑁 → ∞ , 

�
1

𝑟𝑟2(𝑟𝑟 + 1)2 = �
2

𝑟𝑟2(𝑟𝑟 + 1) − 1
∞

𝑟𝑟=1

∞

𝑟𝑟=1

 

      B1* (5) 

  



2. (i) (a) 

�4𝑥𝑥2 − 8𝑥𝑥 + 64  ≤ |𝑥𝑥 + 8| 

4𝑥𝑥2 − 8𝑥𝑥 + 64 ≤ (𝑥𝑥 + 8)2 = 𝑥𝑥2 + 16𝑥𝑥 + 64 

Thus  

3𝑥𝑥2 − 24𝑥𝑥 = 3𝑥𝑥(𝑥𝑥 − 8) ≤ 0 

      M1 

G1  or  consideration of intervals M1 

 

[Alternative method   Solve for critical values  M1 

Sketch graph  

   G1 ] 

 

So     0 ≤ 𝑥𝑥 ≤ 8     A1 (3) 

(b) 
�4𝑥𝑥2 − 8𝑥𝑥 + 64  ≤ |3𝑥𝑥 − 8| 

4𝑥𝑥2 − 8𝑥𝑥 + 64 ≤ (3𝑥𝑥 − 8)2 = 9𝑥𝑥2 − 48𝑥𝑥 + 64 

Thus 

5𝑥𝑥2 − 40𝑥𝑥 = 5𝑥𝑥(𝑥𝑥 − 8) ≥ 0 

      M1 



 

GRAPH G1  or  consideration of intervals M1 

 

[Alternative method   Solve for critical values  M1 

Sketch graph 

   G1 ] 

 

So     𝑥𝑥 ≤ 0  or  𝑥𝑥 ≥ 8    A1 (3) 

(ii) (a) 

��4𝑥𝑥2 − 8𝑥𝑥 + 64 + 2(𝑥𝑥 − 1)� 𝑓𝑓(𝑥𝑥) 

= ��4𝑥𝑥2 − 8𝑥𝑥 + 64 + 2(𝑥𝑥 − 1)� ��4𝑥𝑥2 − 8𝑥𝑥 + 64 − 2(𝑥𝑥 − 1)� 

= 4𝑥𝑥2 − 8𝑥𝑥 + 64 − 4𝑥𝑥2 + 8𝑥𝑥 − 4 = 60 

Thus     𝑓𝑓(𝑥𝑥) = 60
�√4𝑥𝑥2−8𝑥𝑥+64+2(𝑥𝑥−1)�

 

and so  𝑓𝑓(𝑥𝑥) → 0   as   𝑥𝑥 → ∞ 

      E1 (1) 



(b)   

 

      G2 (2) 

(iii)  Require one critical value  3, so   3𝑚𝑚 + 𝑐𝑐 = ±5   

      M1  

and as only one critical value choose  𝑚𝑚 = 2  and 𝑐𝑐 = −1, or  𝑚𝑚 = −2  and 𝑐𝑐 = 1 

      dM1 A1 

�4𝑥𝑥2 − 5𝑥𝑥 + 4  ≤ |2𝑥𝑥 − 1| 

4𝑥𝑥2 − 5𝑥𝑥 + 4 ≤ (2𝑥𝑥 − 1)2 = 4𝑥𝑥2 − 4𝑥𝑥 + 1 

Giving  𝑥𝑥 ≥ 3     M1 

     G1 (5) 

  



(iv) To obtain 4 critical values require quadratic to cross x axis and so 

      E1 

𝑥𝑥2 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞 = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 

has roots  -5  and  7  giving   𝑝𝑝 −𝑚𝑚 = −2  and  𝑞𝑞 − 𝑐𝑐 = −35 

      M1 A1 

and 

−(𝑥𝑥2 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞) = 𝑚𝑚𝑚𝑚 + 𝑐𝑐 

has roots  1  and 5  giving  𝑝𝑝 + 𝑚𝑚 = −6   and   𝑞𝑞 + 𝑐𝑐 = 5 

      B1 

Thus,  𝑝𝑝 = −4 , 𝑞𝑞 = −15 ,𝑚𝑚 = −2 , 𝑐𝑐 = 20 

      A1 

     G1 (6) 

  



3. (i) (a) 

𝑦𝑦 = 𝑔𝑔(𝑥𝑥) = ln �1 +
1
𝑥𝑥
� −

𝑥𝑥 + 𝑐𝑐
𝑥𝑥(𝑥𝑥 + 1) = ln(𝑥𝑥 + 1) − ln 𝑥𝑥 −

𝑥𝑥 + 𝑐𝑐
𝑥𝑥(𝑥𝑥 + 1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
1

𝑥𝑥 + 1
−

1
𝑥𝑥
−
𝑥𝑥(𝑥𝑥 + 1) − (𝑥𝑥 + 𝑐𝑐)(2𝑥𝑥 + 1)

𝑥𝑥2(𝑥𝑥 + 1)2   

      M1 

=
𝑥𝑥2(𝑥𝑥 + 1) − 𝑥𝑥(𝑥𝑥 + 1)2 − 𝑥𝑥(𝑥𝑥 + 1) + (𝑥𝑥 + 𝑐𝑐)(2𝑥𝑥 + 1)

𝑥𝑥2(𝑥𝑥 + 1)2  

=
(2𝑐𝑐 − 1)𝑥𝑥 + 𝑐𝑐
𝑥𝑥2(𝑥𝑥 + 1)2  

      A1 

When  𝑐𝑐 ≥ 1
2

 , as  𝑥𝑥 > 0 , (2𝑐𝑐 − 1)𝑥𝑥 ≥ 0  , and  𝑐𝑐 > 0  , so the numerator is positive and the  

denominator is a non-zero square so also positive, so  𝑦𝑦 = 𝑔𝑔(𝑥𝑥) has positive gradient. 

      E1 (3) 

(b)  𝑦𝑦 = 𝑔𝑔(𝑥𝑥)  has negative gradient for   0 ≤ 𝑐𝑐 < 1
2

  , if 

(2𝑐𝑐 − 1)𝑥𝑥 + 𝑐𝑐 < 0 

That is  
(2𝑐𝑐 − 1)𝑥𝑥 < −𝑐𝑐 

So 

𝑥𝑥 >
−𝑐𝑐

2𝑐𝑐 − 1
=

𝑐𝑐
1 − 2𝑐𝑐

 

      B1 (1) 

(ii)  (a) 

If   𝑐𝑐 = 3
4

  ,  then from (i) (a) the gradient is positive  

      E1 

and we are given that 𝑔𝑔(𝑥𝑥) → −∞  as  𝑥𝑥 → 0 .  

 The gradient tends to zero as 𝑥𝑥 → ∞ , and to  ∞  as  𝑥𝑥 → 0 . E1 

Also, 𝑔𝑔(𝑥𝑥) → 0  as  𝑥𝑥 → ∞ .   E1 



     G1 (4) 

(b) 

If   𝑐𝑐 = 1
4

  , then from (i)(b) the gradient is negative for    𝑥𝑥 > 1
2

  .   

      B1 

The gradient is zero when  𝑥𝑥 = 1
2

 , and positive when  𝑥𝑥 < 1
2

 , and tending  to zero as 𝑥𝑥 → ∞ , and 
to  ∞  as  𝑥𝑥 → 0.    B1 

Again, we are given that 𝑔𝑔(𝑥𝑥) → −∞  as  𝑥𝑥 → 0 , and  𝑔𝑔(𝑥𝑥) → 0  as  𝑥𝑥 → ∞ . 

There is a turning point (maximum) at  �1
2

 , ln 3 − 1  � = �1
2

 , ln 3
2
  �  which is above the x-axis. 

      M1 A1 

     G1 (5) 

  



(iii) 

𝑓𝑓(𝑥𝑥) = �1 +
1
𝑥𝑥
�
𝑥𝑥+𝑐𝑐

 

ln�𝑓𝑓(𝑥𝑥)� = (𝑥𝑥 + 𝑐𝑐) ln �1 +
1
𝑥𝑥
� 

Thus 

𝑓𝑓′(𝑥𝑥)
𝑓𝑓(𝑥𝑥) = ln �1 +

1
𝑥𝑥
� + (𝑥𝑥 + 𝑐𝑐) �

1
𝑥𝑥 + 1

−
1
𝑥𝑥
� = 𝑔𝑔(𝑥𝑥) 

 

𝑓𝑓′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) 

      M1 A1 (2) 

Also,  𝑓𝑓(𝑥𝑥)  is positive for  𝑥𝑥 > 0 . 

(a)  As has been demonstrated in (i) (a) and (ii) (a),  𝑔𝑔(𝑥𝑥) < 0   for  𝑥𝑥 > 0  when  𝑐𝑐 ≥ 1
2

  , so  

 𝑓𝑓′(𝑥𝑥) < 0  and f is a decreasing function. E1 

(b) As has been demonstrated in (i) (b) and (ii) (b),  𝑔𝑔(𝑥𝑥) = 0   for some  𝑥𝑥 > 0  when  0 < 𝑐𝑐 < 1
2

  , 
so  𝑓𝑓′(𝑥𝑥) = 0  for some x and f has a turning point. E1 

(c)  When  𝑐𝑐 = 0  ,  

𝑔𝑔′(𝑥𝑥) =
−1

𝑥𝑥(𝑥𝑥 + 1)2 

Is always negative and  → −∞  as  𝑥𝑥 → 0 , and  → 0  as  𝑥𝑥 → ∞ 

      E1 

whilst  𝑔𝑔(𝑥𝑥) → ∞  as  𝑥𝑥 → 0 , and  𝑔𝑔(𝑥𝑥) → 0  as  𝑥𝑥 → ∞ 

so 𝑔𝑔(𝑥𝑥) is positive for all  𝑥𝑥 > 0 ,   E1 

thus  𝑓𝑓′(𝑥𝑥) is too and thus f is an increasing function  

for all  𝑥𝑥 > 0     E1 (5) 

  



4.  (i) 

Suppose  𝑚𝑚1 = tan 𝜃𝜃1  and  𝑚𝑚2 = tan𝜃𝜃2 , where  −1
2
𝜋𝜋 < 𝜃𝜃1, 𝜃𝜃2 ≤

1
2
𝜋𝜋 , then as the angle between 

the lines is  45𝑜𝑜 , 𝜃𝜃1 − 𝜃𝜃2 = ± 1
4
𝜋𝜋 , 𝑜𝑜𝑜𝑜 ± 3

4
𝜋𝜋 .   M1 

Therefore 

tan(𝜃𝜃1 − 𝜃𝜃2) = ±1 

and so 

tan(𝜃𝜃1 − 𝜃𝜃2) =
tan𝜃𝜃1 − tan𝜃𝜃2

1 + tan𝜃𝜃1 tan𝜃𝜃2
= ±1 

      M1 

i.e. 

𝑚𝑚1 −𝑚𝑚2

1 + 𝑚𝑚1𝑚𝑚2
= ±1 

      *A1 (3) 

(ii) 

4𝑎𝑎𝑎𝑎 = 𝑥𝑥2 

4𝑎𝑎
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑥𝑥 

So the tangent at the point with x-coordinate 𝑝𝑝 is  

 

𝑦𝑦 −
𝑝𝑝2

4𝑎𝑎
=

𝑝𝑝
2𝑎𝑎

(𝑥𝑥 − 𝑝𝑝) 

4𝑎𝑎𝑎𝑎 + 𝑝𝑝2 = 2𝑝𝑝𝑝𝑝 

      M1 

The tangents  4𝑎𝑎𝑎𝑎 + 𝑝𝑝2 = 2𝑝𝑝𝑝𝑝  , 4𝑎𝑎𝑎𝑎 + 𝑞𝑞2 = 2𝑞𝑞𝑞𝑞   meet when 

  2(𝑝𝑝 − 𝑞𝑞)𝑥𝑥 = 𝑝𝑝2 − 𝑞𝑞2 = (𝑝𝑝 − 𝑞𝑞)(𝑝𝑝 + 𝑞𝑞)  and as (𝑝𝑝 − 𝑞𝑞) ≠ 0  ,   

      M1 

𝑥𝑥 =
1
2

(𝑝𝑝 + 𝑞𝑞) 

      *A1 

So 

𝑦𝑦 =
2𝑝𝑝 × 1

2 (𝑝𝑝 + 𝑞𝑞)− 𝑝𝑝2

4𝑎𝑎
=
𝑝𝑝𝑝𝑝
4𝑎𝑎

 

      A1 (4) 

 



and if the tangents meet at  45𝑜𝑜 , then   
𝑝𝑝

2𝑎𝑎 −
𝑞𝑞

2𝑎𝑎
1 + 𝑝𝑝

2𝑎𝑎
𝑞𝑞

2𝑎𝑎
= ±1 

      M1 M1 

2𝑎𝑎(𝑝𝑝 − 𝑞𝑞) = ±(4𝑎𝑎2 + 𝑝𝑝𝑝𝑝) 

(4𝑎𝑎2 + 𝑝𝑝𝑝𝑝)2 = 4𝑎𝑎2(𝑝𝑝 − 𝑞𝑞)2 = 4𝑎𝑎2((𝑝𝑝 + 𝑞𝑞)2 − 4𝑝𝑝𝑝𝑝) 

      M1 

Thus the point of intersection satisfies 

(4𝑎𝑎2 + 4𝑎𝑎𝑎𝑎)2 = 4𝑎𝑎2((2𝑥𝑥)2 − 16𝑎𝑎𝑎𝑎) 

      M1 

That simplifies to 

(𝑎𝑎 + 𝑦𝑦)2 = 𝑥𝑥2 − 4𝑎𝑎𝑎𝑎 

𝑦𝑦2 + 6𝑎𝑎𝑎𝑎 + 𝑎𝑎2 = 𝑥𝑥2 

𝑦𝑦2 + 6𝑎𝑎𝑎𝑎 + 9𝑎𝑎2 = 𝑥𝑥2 + 8𝑎𝑎2 

(𝑦𝑦 + 3𝑎𝑎)2 = 𝑥𝑥2 + 8𝑎𝑎2 

      M1 *A1 (6) 

(iii) 

If 
(𝑦𝑦 + 7𝑎𝑎)2 = 48𝑎𝑎2 + 3𝑥𝑥2 

�
𝑝𝑝𝑝𝑝
4𝑎𝑎

+ 7𝑎𝑎�
2

= 48𝑎𝑎2 + 3 �
1
2

(𝑝𝑝 + 𝑞𝑞)�
2

 

      M1 

(𝑝𝑝𝑝𝑝 + 28𝑎𝑎2)2 = 768𝑎𝑎4 + 12𝑎𝑎2(𝑝𝑝 + 𝑞𝑞)2 

𝑝𝑝2𝑞𝑞2 + 56𝑎𝑎2𝑝𝑝𝑝𝑝 + 784𝑎𝑎4 = 768𝑎𝑎4 + 12𝑎𝑎2(𝑝𝑝 − 𝑞𝑞)2 + 48𝑎𝑎2𝑝𝑝𝑝𝑝 

      M1 

𝑝𝑝2𝑞𝑞2 + 8𝑎𝑎2𝑝𝑝𝑝𝑝 + 16𝑎𝑎4 = 12𝑎𝑎2(𝑝𝑝 − 𝑞𝑞)2 

      M1 A1 

(𝑝𝑝𝑝𝑝 + 4𝑎𝑎2)2 = 3�2𝑎𝑎(𝑝𝑝 − 𝑞𝑞)�2 

𝑝𝑝
2𝑎𝑎 −

𝑞𝑞
2𝑎𝑎

1 + 𝑝𝑝
2𝑎𝑎

𝑞𝑞
2𝑎𝑎

= ±
1
√3

 

      M1 A1 

Thus the tangents are at a constant angle to each other which is  30𝑜𝑜 . A1 (7)  



5.  (i) 

Let  

𝑁𝑁 = �𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ� 

𝑀𝑀𝑀𝑀 = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ� = �𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎 + 𝑏𝑏ℎ

𝑐𝑐𝑐𝑐 + 𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐 + 𝑑𝑑ℎ� 

𝑁𝑁𝑁𝑁 = �𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ� �

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� = �𝑒𝑒𝑒𝑒 + 𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒 + 𝑓𝑓𝑓𝑓

𝑔𝑔𝑔𝑔 + ℎ𝑐𝑐 𝑔𝑔𝑔𝑔 + ℎ𝑑𝑑� 

𝑡𝑡𝑡𝑡(𝑀𝑀𝑀𝑀) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑ℎ = 𝑒𝑒𝑒𝑒 + 𝑔𝑔𝑔𝑔 + 𝑓𝑓𝑓𝑓 + ℎ𝑑𝑑 

= 𝑒𝑒𝑒𝑒 + 𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑔𝑔 + ℎ𝑑𝑑 = 𝑡𝑡𝑡𝑡(𝑁𝑁𝑁𝑁) 

      M1A1 

𝑡𝑡𝑡𝑡(𝑀𝑀 + 𝑁𝑁) = 𝑡𝑡𝑡𝑡 ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� + �𝑒𝑒 𝑓𝑓

𝑔𝑔 ℎ�� = 𝑡𝑡𝑡𝑡 �𝑎𝑎 + 𝑒𝑒 𝑏𝑏 + 𝑓𝑓
𝑐𝑐 + 𝑔𝑔 𝑑𝑑 + ℎ� = 𝑎𝑎 + 𝑒𝑒 + 𝑑𝑑 + ℎ 

= 𝑎𝑎 + 𝑑𝑑 + 𝑒𝑒 + ℎ = 𝑡𝑡𝑡𝑡(𝑀𝑀) + 𝑡𝑡𝑡𝑡(𝑁𝑁) 

      B1 (3) 

(ii) 

1
det𝑀𝑀

𝑑𝑑
𝑑𝑑𝑑𝑑

(det𝑀𝑀) =
1

𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏
×
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏) =
1

𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏
× �𝑎𝑎𝑑̇𝑑 + 𝑎̇𝑎𝑑𝑑 − 𝑏𝑏𝑐̇𝑐 − 𝑏̇𝑏𝑐𝑐� 

      M1 

𝑡𝑡𝑡𝑡 �𝑀𝑀−1 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑡𝑡𝑡𝑡 �

1
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

� 𝑑𝑑 −𝑏𝑏
−𝑐𝑐 𝑎𝑎 ��𝑎̇𝑎 𝑏̇𝑏

𝑐̇𝑐 𝑑̇𝑑
�� = 𝑡𝑡𝑡𝑡 �

1
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

� 𝑑𝑑𝑎̇𝑎 − 𝑏𝑏𝑐̇𝑐 𝑑𝑑𝑏̇𝑏 − 𝑏𝑏𝑑̇𝑑
−𝑐𝑐𝑎̇𝑎 + 𝑎𝑎𝑐̇𝑐 −𝑐𝑐𝑏̇𝑏 + 𝑎𝑎𝑑̇𝑑

�� 

=
1

𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏
× �𝑑𝑑𝑎̇𝑎 − 𝑏𝑏𝑐̇𝑐 − 𝑐𝑐𝑏̇𝑏 + 𝑎𝑎𝑑̇𝑑� =

1
det𝑀𝑀

𝑑𝑑
𝑑𝑑𝑑𝑑

(det𝑀𝑀) 

      M1  *A1 (3) 

(iii) 

𝑡𝑡𝑡𝑡 �𝑀𝑀−1 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑡𝑡𝑡𝑡�𝑀𝑀−1(𝑀𝑀𝑀𝑀 −𝑁𝑁𝑁𝑁)� = 𝑡𝑡𝑡𝑡(𝑀𝑀−1𝑀𝑀𝑀𝑀 −𝑀𝑀−1𝑁𝑁𝑁𝑁) = 𝑡𝑡𝑡𝑡(𝑁𝑁) − 𝑡𝑡𝑡𝑡(𝑁𝑁𝑁𝑁𝑀𝑀−1) = 0 

Thus 

1
det𝑀𝑀

𝑑𝑑
𝑑𝑑𝑑𝑑

(det𝑀𝑀) = 0 

and so det𝑀𝑀  is independent of 𝑡𝑡 

      E1 

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑡𝑡𝑡𝑡(𝑀𝑀)� = 𝑡𝑡𝑡𝑡 �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� = 𝑡𝑡𝑡𝑡(𝑀𝑀𝑀𝑀 −𝑁𝑁𝑁𝑁) = 𝑡𝑡𝑡𝑡(𝑀𝑀𝑀𝑀) − 𝑡𝑡𝑡𝑡(𝑁𝑁𝑁𝑁) = 0 

so 𝑡𝑡𝑡𝑡(𝑀𝑀) is independent of 𝑡𝑡 

      E1 



𝑡𝑡𝑡𝑡(𝑀𝑀2) = 𝑡𝑡𝑡𝑡 ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�� = 𝑡𝑡𝑡𝑡 �𝑎𝑎

2 + 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 + 𝑐𝑐𝑐𝑐 𝑏𝑏𝑏𝑏 + 𝑑𝑑2

� = 𝑎𝑎2 + 𝑏𝑏𝑏𝑏 + 𝑏𝑏𝑏𝑏 + 𝑑𝑑2 

= 𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑑𝑑2 + 2(𝑏𝑏𝑏𝑏 − 𝑎𝑎𝑎𝑎) = (𝑎𝑎 + 𝑑𝑑)2 − 2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑡𝑡𝑡𝑡𝑡𝑡)2 − 2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

      M1 A1 

Therefore 

𝑑𝑑
𝑑𝑑𝑑𝑑 �

𝑡𝑡𝑡𝑡(𝑀𝑀2)� =
𝑑𝑑
𝑑𝑑𝑑𝑑

((𝑡𝑡𝑡𝑡𝑡𝑡)2) −
𝑑𝑑
𝑑𝑑𝑑𝑑

(2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = 0 

and so 𝑡𝑡𝑡𝑡(𝑀𝑀2) is independent of t 

      E1 (5) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑀𝑀 −𝑁𝑁𝑁𝑁 

So 

�𝐴̇𝐴 𝐵̇𝐵
𝐶̇𝐶 𝐷̇𝐷

� = �𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷��

𝑡𝑡 𝑡𝑡
0 𝑡𝑡� − �𝑡𝑡 𝑡𝑡

0 𝑡𝑡� �
𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷� = �−𝐶𝐶𝐶𝐶 𝐴𝐴𝐴𝐴 − 𝐷𝐷𝐷𝐷

0 𝐶𝐶𝐶𝐶 � 

      M1 A1 

Thus  𝐶𝐶  is a constant,    A1 

  𝐴𝐴 = 𝑎𝑎 − 1
2
𝐶𝐶𝑡𝑡2, 𝐷𝐷 = 𝑑𝑑 + 1

2
𝐶𝐶𝑡𝑡2   A1 

and as  
𝐵̇𝐵 = 𝐴𝐴𝐴𝐴 − 𝐷𝐷𝐷𝐷 = (𝑎𝑎 − 𝑑𝑑)𝑡𝑡 − 𝐶𝐶𝑡𝑡3 

      M1 

𝐵𝐵 = 𝑏𝑏 +
1
2

(𝑎𝑎 − 𝑑𝑑)𝑡𝑡2 −
1
4
𝐶𝐶𝑡𝑡4 

      A1 (6) 

(iv)  If   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝑀𝑀 

Then for example,  𝑀𝑀 = �𝑒𝑒
𝑡𝑡 1 + 𝑒𝑒𝑡𝑡
𝑒𝑒𝑡𝑡 1 − 𝑒𝑒𝑡𝑡

� ,  𝑁𝑁 = �1 −𝑒𝑒−𝑡𝑡
0 1

� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �𝑒𝑒
𝑡𝑡 𝑒𝑒𝑡𝑡
𝑒𝑒𝑡𝑡 −𝑒𝑒𝑡𝑡

� 

And    𝑁𝑁 = �𝑒𝑒
𝑡𝑡 1 + 𝑒𝑒𝑡𝑡
𝑒𝑒𝑡𝑡 1 − 𝑒𝑒𝑡𝑡

� �1 −𝑒𝑒−𝑡𝑡
0 1

� = �𝑒𝑒
𝑡𝑡 𝑒𝑒𝑡𝑡
𝑒𝑒𝑡𝑡 −𝑒𝑒𝑡𝑡

� 

      M1 A1 

and 

𝑡𝑡𝑡𝑡(𝑁𝑁) = 2 

so no.      A1 (3)  



6.  (i) (a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑥𝑥 + 3𝑦𝑦 + 𝑢𝑢 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑥𝑥 + 𝑦𝑦 + 𝑢𝑢 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑥𝑥 − 𝑦𝑦)

𝑑𝑑𝑑𝑑
= −2(𝑥𝑥 − 𝑦𝑦) 

      M1 

𝑥𝑥 − 𝑦𝑦 = 𝐴𝐴𝑒𝑒−2𝑡𝑡 

      A1 

If  𝑥𝑥 = 𝑦𝑦 = 0  at some time  𝑡𝑡 > 0 , then  𝐴𝐴 = 0 , A1 

so considering  𝑡𝑡 = 0 , 𝑥𝑥0 − 𝑦𝑦0 = 0  which gives the required result. E1 (4) 

(b)  If  𝑥𝑥0 = 𝑦𝑦0 , then at  𝑡𝑡 = 0 , 𝑥𝑥 − 𝑦𝑦 = 0   so  𝐴𝐴 = 0  and hence  𝑥𝑥 = 𝑦𝑦  for all  𝑡𝑡 

      E1 

 

Thus 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑥𝑥 + 𝑢𝑢 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2𝑥𝑥 = 𝑢𝑢 

𝑒𝑒−2𝑡𝑡
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2𝑒𝑒−2𝑡𝑡𝑥𝑥 = 𝑒𝑒−2𝑡𝑡𝑢𝑢 

𝑒𝑒−2𝑡𝑡𝑥𝑥 = −
1
2
𝑒𝑒−2𝑡𝑡𝑢𝑢 + 𝑐𝑐 

𝑥𝑥 = −
1
2
𝑢𝑢 + 𝑐𝑐𝑒𝑒2𝑡𝑡 

      M1 A1 

𝑡𝑡 = 0 ,  𝑥𝑥 = 𝑥𝑥0  so  𝑥𝑥0 = −1
2
𝑢𝑢 + 𝑐𝑐  and we want   𝑥𝑥 = 0  when  𝑡𝑡 = 𝑇𝑇 

so   

0 = −
1
2
𝑢𝑢 + 𝑐𝑐𝑒𝑒2𝑇𝑇 

Thus  𝑐𝑐 = 1
2
𝑢𝑢𝑒𝑒−2𝑇𝑇 , 𝑥𝑥0 = −1

2
𝑢𝑢 + 1

2
𝑢𝑢𝑒𝑒−2𝑇𝑇 

and hence,  

𝑢𝑢 =
2𝑥𝑥0𝑒𝑒2𝑇𝑇

1 − 𝑒𝑒2𝑇𝑇
 

      dM1 A1 (5) 



(ii)  (a) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

− 2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧)

𝑑𝑑𝑑𝑑
= −(𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧) 

Thus 

𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 = 𝐴𝐴𝑒𝑒−𝑡𝑡 

      M1 A1 

If  𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 = 0  at some time  𝑡𝑡 > 0 , then  𝐴𝐴 = 0 , so considering  𝑡𝑡 = 0 , 𝑥𝑥0 − 2𝑦𝑦0 + 𝑧𝑧0 = 0 
which gives the required result.  E1 (3) 

(b)  we know from (a) that if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 = 0  at some time  𝑡𝑡 > 0 , then  𝐴𝐴 = 0 , and so 

  𝑥𝑥 − 2𝑦𝑦 + 𝑧𝑧 = 0   or  2𝑦𝑦 = 𝑥𝑥 + 𝑧𝑧  E1 

Thus  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 2𝑥𝑥 − 3𝑧𝑧 + 𝑢𝑢 

and 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑧𝑧 + 𝑢𝑢 

So 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑥𝑥 − 𝑧𝑧) = 2(𝑥𝑥 − 𝑧𝑧) 

and so 

𝑥𝑥 − 𝑧𝑧 = 𝐵𝐵𝑒𝑒2𝑡𝑡 

      M1 A1 

But as  𝑥𝑥 = 𝑧𝑧 = 0  at some time  𝑡𝑡 > 0,  𝐵𝐵 = 0  and so  𝑥𝑥 = 𝑧𝑧  for all  𝑡𝑡  

and thus  𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧  for all  𝑡𝑡    

Hence  
𝑥𝑥0 = 𝑦𝑦0 = 𝑧𝑧0 

      E1 (4) 

  



(c) 

Given   
𝑥𝑥0 = 𝑦𝑦0 = 𝑧𝑧0 

we know that (a) and (b) apply (as similarly in (i)),  so   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑧𝑧 + 𝑢𝑢 

      M1 

Thus 

𝑧𝑧 = 𝑢𝑢 + 𝑐𝑐𝑒𝑒−𝑡𝑡 

      A1 

𝑡𝑡 = 0 ,  𝑧𝑧 = 𝑧𝑧0  so  𝑧𝑧0 = 𝑢𝑢 + 𝑐𝑐   and  0 = 𝑢𝑢 + 𝑐𝑐𝑒𝑒−𝑇𝑇 

      dM1 

𝑐𝑐 = −𝑢𝑢𝑒𝑒𝑇𝑇 

𝑢𝑢 =
𝑧𝑧0

1 − 𝑒𝑒𝑇𝑇
 

      A1 (4)  



7.  (i)  Each term of  𝑓𝑓(𝑛𝑛) > 0  so their sum is too. 

     E1 

1
(𝑛𝑛+1)(𝑛𝑛+2)…(𝑛𝑛+𝑟𝑟) < 1

(𝑛𝑛+1)𝑟𝑟  so  𝑓𝑓(𝑛𝑛) = 1
𝑛𝑛+1

+ 1
(𝑛𝑛+1)(𝑛𝑛+2) + ⋯ < 1

𝑛𝑛+1
+ 1

(𝑛𝑛+1)2 + ⋯ = 1 𝑛𝑛+1⁄
1−1 𝑛𝑛+1�

= 1
𝑛𝑛

 

     M1 A1(3) 

Thus  0 < 𝑓𝑓(𝑛𝑛) < 1
𝑛𝑛

 

(ii)  1
𝑛𝑛+1

− 1
(𝑛𝑛+1)(𝑛𝑛+2) > 0 ,  1

(𝑛𝑛+1)(𝑛𝑛+2)(𝑛𝑛+3) −
1

(𝑛𝑛+1)(𝑛𝑛+2)(𝑛𝑛+3)(𝑛𝑛+4) > 0  , etc  so  𝑔𝑔(𝑛𝑛) > 0 

     M1 A1 

Also,  1
(𝑛𝑛+1)(𝑛𝑛+2) −

1
(𝑛𝑛+1)(𝑛𝑛+2)(𝑛𝑛+3) > 0  ,  1

(𝑛𝑛+1)(𝑛𝑛+2)(𝑛𝑛+3)(𝑛𝑛+4) −
1

(𝑛𝑛+1)(𝑛𝑛+2)(𝑛𝑛+3)(𝑛𝑛+4)(𝑛𝑛+5) > 0  , etc 

so  𝑔𝑔(𝑛𝑛) = 1
𝑛𝑛+1

−a sum of positive terms < 1
𝑛𝑛+1

  M1 A1 (4) 

Thus  0 < 𝑔𝑔(𝑛𝑛) < 1
𝑛𝑛+1

 

(iii) 
(2𝑛𝑛)! 𝑒𝑒 − 𝑓𝑓(2𝑛𝑛) 

= (2𝑛𝑛)! �1 + 1 +
1
2!

+
1
3!

+ ⋯� −
1

2𝑛𝑛 + 1
−

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2) −

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2)(2𝑛𝑛 + 3) −⋯ 

      M1 A1 

 

= (2𝑛𝑛)! �1 + 1 +
1
2!

+ ⋯+
1

(2𝑛𝑛)!
� 

+
(2𝑛𝑛)!

(2𝑛𝑛 + 1)!
+

(2𝑛𝑛)!
(2𝑛𝑛 + 2)!

+⋯−
1

2𝑛𝑛 + 1
−

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2) −

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2)(2𝑛𝑛 + 3) −⋯ 

= (2𝑛𝑛)! �1 + 1 +
1
2!

+ ⋯+
1

(2𝑛𝑛)!
� 

which is an integer.    M1 A1(4) 

  
 

  



(2𝑛𝑛)!
𝑒𝑒

+ 𝑔𝑔(2𝑛𝑛) = (2𝑛𝑛)! 𝑒𝑒−1 + 𝑔𝑔(2𝑛𝑛) 

= (2𝑛𝑛)! �1− 1 +
1
2!
−

1
3!

+ ⋯� +
1

2𝑛𝑛 + 1
−

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2) +

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2)(2𝑛𝑛 + 3) −⋯ 

      M1 A1 

= (2𝑛𝑛)! �1 − 1 +
1
2!

+ ⋯+
1

(2𝑛𝑛)!
� 

−
(2𝑛𝑛)!

(2𝑛𝑛 + 1)!
+

(2𝑛𝑛)!
(2𝑛𝑛 + 2)!

−⋯+
1

2𝑛𝑛 + 1
−

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2) +

1
(2𝑛𝑛 + 1)(2𝑛𝑛 + 2)(2𝑛𝑛 + 3) −⋯ 

= (2𝑛𝑛)! �1 − 1 +
1
2!

+ ⋯+
1

(2𝑛𝑛)!
� 

      M1 A1 (4) 

which is an integer. 

(iv)  𝑞𝑞�(2𝑛𝑛)! 𝑒𝑒 − 𝑓𝑓(2𝑛𝑛)�  is an integer as is  𝑝𝑝 �(2𝑛𝑛)!
𝑒𝑒

+ 𝑔𝑔(2𝑛𝑛)� 

Thus  (𝑝𝑝 �(2𝑛𝑛)!
𝑒𝑒

+ 𝑔𝑔(2𝑛𝑛)�)− (𝑞𝑞�(2𝑛𝑛)! 𝑒𝑒 − 𝑓𝑓(2𝑛𝑛)�)  is an integer. 

  �𝑝𝑝 �(2𝑛𝑛)!
𝑒𝑒

+ 𝑔𝑔(2𝑛𝑛)�� − �𝑞𝑞�(2𝑛𝑛)! 𝑒𝑒 − 𝑓𝑓(2𝑛𝑛)�� = (2𝑛𝑛)! �𝑝𝑝
𝑒𝑒
− 𝑞𝑞𝑞𝑞� + 𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛) 

      M1 

= 𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛)   

so  𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛) is an integer as required.  A1(2) 

(v)  As  (iv) is true for all positive integers   𝑛𝑛 , it must be true for  𝑛𝑛 = max (𝑝𝑝, 𝑞𝑞) 

By (ii)     𝑝𝑝𝑝𝑝(2𝑛𝑛) < 𝑝𝑝
2𝑛𝑛+1

≤ 𝑛𝑛
2𝑛𝑛+1

< 1
2

 

By (i)     𝑞𝑞𝑞𝑞(2𝑛𝑛) < 𝑞𝑞
2𝑛𝑛
≤ 𝑛𝑛

2𝑛𝑛
= 1

2
 

      M1 

Therefore,    𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛) < 1
2

+ 1
2

= 1 

and trivially by (i) and (ii) 

𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛) > 0 

      A1 

This means that  𝑝𝑝𝑝𝑝(2𝑛𝑛) + 𝑞𝑞𝑞𝑞(2𝑛𝑛)  cannot be an integer which contradicts the result of (iv) 

and hence there are no integers such that   𝑝𝑝
𝑒𝑒

= 𝑞𝑞𝑞𝑞  , that is such that  𝑝𝑝
𝑞𝑞

= 𝑒𝑒2  and so  𝑒𝑒2 is 

irrational.     E1 (3)  



8.  (i)   (𝑦𝑦 − 𝑥𝑥 + 3)(𝑦𝑦 + 𝑥𝑥 − 5) = 0  if and only if either  𝑦𝑦 − 𝑥𝑥 + 3 = 0  or  𝑦𝑦 + 𝑥𝑥 − 5 = 0 .  These 
are the equations of two straight lines with gradients 1 and -1. 

     E1 

A pair of straight lines with gradients 1 and -1 can be expressed as  𝑦𝑦 − 𝑥𝑥 + 𝑎𝑎 = 0  and 

  𝑦𝑦 + 𝑥𝑥 + 𝑏𝑏 = 0 .   Thus  (𝑦𝑦 − 𝑥𝑥 + 𝑎𝑎)(𝑦𝑦 + 𝑥𝑥 + 𝑏𝑏) = 0  can be expressed  

 𝑦𝑦2 − 𝑥𝑥2 + 𝑝𝑝𝑝𝑝 + 𝑞𝑞𝑞𝑞 + 𝑟𝑟 = 0  if and only if  𝑎𝑎 + 𝑏𝑏 = 𝑝𝑝 ,  𝑎𝑎 − 𝑏𝑏 = 𝑞𝑞 , and  𝑎𝑎𝑎𝑎 = 𝑟𝑟 .  M1 A1 

Hence,  𝑎𝑎 = 1
2

(𝑝𝑝 + 𝑞𝑞)  ,  𝑏𝑏 = 1
2

(𝑝𝑝 − 𝑞𝑞)  and so  1
2

(𝑝𝑝 + 𝑞𝑞) 1
2

(𝑝𝑝 − 𝑞𝑞) = 𝑟𝑟  which can be written  

𝑝𝑝2 − 𝑞𝑞2 = 4𝑟𝑟 .    M1 *A1 (5) 

 

(ii)  If a point  (𝑥𝑥,𝑦𝑦) lies on  𝐶𝐶1 , then  𝑥𝑥 = 𝑦𝑦2 + 2𝑠𝑠𝑠𝑠 + 𝑠𝑠(𝑠𝑠 + 1) = 0  which can be rearranged as   
𝑦𝑦2 + 2𝑠𝑠𝑠𝑠 + 𝑠𝑠(𝑠𝑠 + 1) − 𝑥𝑥 = 0 .  If a point  (𝑥𝑥,𝑦𝑦)  lies on  𝐶𝐶2 , then  𝑦𝑦 = 𝑥𝑥2  which can be expressed 
as  𝑘𝑘(𝑦𝑦 − 𝑥𝑥2) = 0  for any real number  𝑘𝑘.  Thus, if it lies on both 

  𝑦𝑦2 + 2𝑠𝑠𝑠𝑠 + 𝑠𝑠(𝑠𝑠 + 1) − 𝑥𝑥 + 𝑘𝑘(𝑦𝑦 − 𝑥𝑥2) = 0  for any real number  𝑘𝑘 

      E1 E1 

If  𝑘𝑘 = 1 ,  
𝑦𝑦2 − 𝑥𝑥2 + (2𝑠𝑠 + 1)𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠(𝑠𝑠 + 1) = 0 

and   

(2𝑠𝑠 + 1)2 − (−1)2 = 4𝑠𝑠2 + 4𝑠𝑠 = 4𝑠𝑠(𝑠𝑠 + 1) 

satisfying the condition as derived in (i).  M1 A1 (4) 

(iii) If  𝐶𝐶1 and  𝐶𝐶2 intersect at four distinct points, then they do so on the pair of straight lines,  

𝑦𝑦2 − 𝑥𝑥2 + (2𝑠𝑠 + 1)𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠(𝑠𝑠 + 1) = 0  . 

     E1 

  𝑦𝑦2 − 𝑥𝑥2 + (2𝑠𝑠 + 1)𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠(𝑠𝑠 + 1) = (𝑦𝑦 + 𝑥𝑥 + 𝑠𝑠 + 1)(𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠)  B1 

Therefore, 𝑦𝑦 + 𝑥𝑥 + 𝑠𝑠 + 1 = 0  must meet 𝐶𝐶2 at two distinct points and 𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠 = 0  must meet 
𝐶𝐶2 at two different distinct points.  E1 

Thus, solving  𝑥𝑥2 + 𝑥𝑥 + 𝑠𝑠 + 1 = 0  having two distinct roots, the discriminant 1 − 4(𝑠𝑠 + 1) > 0 

That is  𝑠𝑠 < −3
4

     M1 A1 

and solving  𝑥𝑥2 − 𝑥𝑥 + 𝑠𝑠 = 0  having two distinct roots, the discriminant 1 − 4𝑠𝑠 > 0  i.e.   𝑠𝑠 < 1
4

 

So it is necessary that  𝑠𝑠 < −3
4

 .  *A1 (6) 

  



(iv)  If  𝑠𝑠 < −3
4

   for 𝐶𝐶1 and  𝐶𝐶2 to intersect at four points, they do so on the pair of straight lines, 
two distinct on each of the lines in (iii) as shown by the non-zero discriminants in (iii) and that 
will be four distinct points provided that the point of intersection of the two lines is not one of 
them.        E1 E1 

The intersection of  

 𝑦𝑦 + 𝑥𝑥 + 𝑠𝑠 + 1 = 0  and  𝑦𝑦 − 𝑥𝑥 + 𝑠𝑠 = 0  is at  �− 1
2

,−2𝑠𝑠+1
2
�  which will only lie on 𝐶𝐶2  if  

−2𝑠𝑠+1
2

= �− 1
2
�
2

  that is if 𝑠𝑠 = −3
4

  which is prohibited. M1 A1 E1 (5) 

  



9.  

 

 

 

 

 

 

 

 

 

    G1  (1) 

(i)  Conserving momentum in the direction of the line of centres 

𝑚𝑚𝑚𝑚 cos𝛼𝛼 = 𝑚𝑚𝑚𝑚 cos𝛼𝛼 −𝑚𝑚𝑚𝑚 sin𝛼𝛼 +𝑚𝑚𝑚𝑚 

that is  

 𝑢𝑢 cos𝛼𝛼 = (𝑥𝑥 cos𝛼𝛼 − 𝑦𝑦 sin𝛼𝛼) + 𝑣𝑣  M1 

Newton’s experimental law of impact in the same direction gives 

𝑣𝑣 − (𝑥𝑥 cos𝛼𝛼 − 𝑦𝑦 sin𝛼𝛼) =
1
3
𝑢𝑢 cos𝛼𝛼 

Solving,   (𝑥𝑥 cos𝛼𝛼 − 𝑦𝑦 sin𝛼𝛼) = 1
3
𝑢𝑢 cos𝛼𝛼                                     (A) 

      M1 

Conserving momentum perpendicular to the direction of the line of centres 

      M1 

𝑚𝑚𝑚𝑚 sin𝛼𝛼 = 𝑚𝑚(𝑥𝑥 sin𝛼𝛼 + 𝑦𝑦 cos𝛼𝛼) 

that is 

(𝑥𝑥 sin𝛼𝛼 + 𝑦𝑦 cos𝛼𝛼) = 𝑢𝑢 sin𝛼𝛼                                                              (B) 

Solving equations A and B simultaneously:- 

𝐴𝐴 cos𝛼𝛼 + 𝐵𝐵 sin𝛼𝛼  gives  𝑥𝑥 = 𝑢𝑢 �1
3

cos2 𝛼𝛼 + sin2 𝛼𝛼� = 1
3
𝑢𝑢(1 + 2 sin2 𝛼𝛼) 

𝐵𝐵 cos𝛼𝛼 − 𝐴𝐴 sin𝛼𝛼  gives  𝑦𝑦 = 2
3
𝑢𝑢 sin𝛼𝛼 cos𝛼𝛼  M1 

Thus the velocity of B after the collision is �
−1

3
𝑢𝑢(1 + 2 sin2 𝛼𝛼)
2
3
𝑢𝑢 sin𝛼𝛼 cos𝛼𝛼

�  as required.  *A1 (5) 
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Alternative for part (i) 

 

 

 

 

 

 

 

 

 

 

G1 (1) 

Conserving momentum in the direction of the line of centres 

𝑚𝑚𝑚𝑚 cos𝛼𝛼 = 𝑚𝑚𝑚𝑚 + 𝑚𝑚𝑚𝑚 

That is                                                               𝑢𝑢 cos𝛼𝛼 = 𝑥𝑥 + 𝑤𝑤 

     M1 

Newton’s experimental law of impact in the same direction gives 

𝑤𝑤 − 𝑥𝑥 =
1
3
𝑢𝑢 cos𝛼𝛼 

Solving,   𝑥𝑥 = 1
3
𝑢𝑢 cos𝛼𝛼                                      

      M1 

Conserving momentum perpendicular to the direction of the line of centres 

      M1 

𝑚𝑚𝑚𝑚 sin𝛼𝛼 = 𝑚𝑚𝑚𝑚 

that is 

𝑦𝑦 = 𝑢𝑢 sin𝛼𝛼 

 
 Thus the velocity of B after the collision is 

 �
−1

3
𝑢𝑢 cos𝛼𝛼 cos𝛼𝛼 − 𝑢𝑢 sin𝛼𝛼 sin𝛼𝛼

𝑢𝑢 sin𝛼𝛼 cos𝛼𝛼 − 1
3
𝑢𝑢 cos𝛼𝛼 sin𝛼𝛼

� = �
−1

3
𝑢𝑢(1 + 2 sin2 𝛼𝛼)
2
3
𝑢𝑢 sin𝛼𝛼 cos𝛼𝛼

�  as required.  M1 *A1 (5) 

                                                  

 

α 

u 

y 

x 

w 



 

(ii)  The lowest point of sphere B (which is vertically below its centre) crosses the y axis at a time 
2𝑟𝑟 cos𝛼𝛼

1
3𝑢𝑢(1 + 2 sin2 𝛼𝛼)

 

after the collision.    B1 

Thus it crosses the y axis at a point  

2𝑟𝑟 sin𝛼𝛼 +
2
3
𝑢𝑢 sin𝛼𝛼 cos𝛼𝛼

2𝑟𝑟 cos𝛼𝛼
1
3𝑢𝑢(1 + 2 sin2 𝛼𝛼)

= 2𝑟𝑟 �sin𝛼𝛼 + cos𝛼𝛼
2 sin𝛼𝛼 cos𝛼𝛼
1 + 2 sin2 𝛼𝛼

� 

      M1 

from the origin, that is at  (0,𝑌𝑌)  where  𝑌𝑌 = 2𝑟𝑟(sin𝛼𝛼 + cos𝛼𝛼 tan𝛽𝛽)  and tan𝛽𝛽 = 2 sin𝛼𝛼 cos𝛼𝛼
1+2sin2 𝛼𝛼

 

      *A1 (3) 

Alternatively, after the collision sphere B moves at an angle   𝛽𝛽 above the negative x axis, where  
 tan𝛽𝛽 = 2sin𝛼𝛼 cos𝛼𝛼

1+2sin2 𝛼𝛼
  (from the velocity of B in (i)) and so by trigonometry, the lowest point will be a 

distance  2rcos𝛼𝛼 tan𝛽𝛽 further in the y direction than the point it is at when the collision occurs 
which had a y coordinate  2𝑟𝑟 sin𝛼𝛼 . 

(iii) 

 

 

 

 

     

 

 

 

 

 

 

 

G1 

By trigonometry, the distance between the lowest points of spheres B and C when their lowest 
points are on the y axis must be more than  2𝑟𝑟 sec𝛽𝛽 so to avoid any contact, ℎ > 𝑌𝑌 + 2𝑟𝑟 sec𝛽𝛽 . 

      E1 (2) 

  

𝛽𝛽 

Y 



(iv) 

𝑌𝑌 = 2𝑟𝑟(sin𝛼𝛼 + cos𝛼𝛼 tan𝛽𝛽) =
2𝑟𝑟

cos𝛽𝛽
(sin𝛼𝛼 cos𝛽𝛽 + cos𝛼𝛼 sin𝛽𝛽) = 2𝑟𝑟 sec𝛽𝛽 sin(𝛼𝛼 + 𝛽𝛽) ≤ 2𝑟𝑟 sec𝛽𝛽 

as sin(𝛼𝛼 + 𝛽𝛽) ≤ 1    M1 A1 

But,  𝛼𝛼 + 𝛽𝛽 ≠ 𝜋𝜋
2

   because expression (A) in (i) cannot be zero, or alternatively,  tan𝛽𝛽 = 2 sin𝛼𝛼 cos𝛼𝛼
1+2sin2 𝛼𝛼

  
would give a contradiction.  Thus  𝑌𝑌 < 2𝑟𝑟 sec𝛽𝛽                                              E1 (3) 

So, from this result and (iii) there will be no striking if ℎ > 4𝑟𝑟 sec𝛽𝛽  B1 

The greatest value of  sec𝛽𝛽 occurs when  tan𝛽𝛽 is greatest.   E1 

𝑑𝑑
𝑑𝑑𝑑𝑑

(tan𝛽𝛽) =
𝑑𝑑
𝑑𝑑𝑑𝑑

�
2 sin𝛼𝛼 cos𝛼𝛼
1 + 2 sin2 𝛼𝛼

� =
(1 + 2 sin2 𝛼𝛼)2(cos2 𝛼𝛼 − sin2 𝛼𝛼) − 2 sin𝛼𝛼 cos𝛼𝛼 4 sin𝛼𝛼 cos𝛼𝛼

(1 + 2 sin2 𝛼𝛼)2  

Numerator  = (1 + 2𝑠𝑠2)2(1 − 2𝑠𝑠2) − 8𝑠𝑠2(1 − 𝑠𝑠2) = 2 − 8𝑠𝑠2  M1 A1 

where  𝑠𝑠 = sin𝛼𝛼 

Thus, the differential is zero when sin𝛼𝛼 = 1
2

 , then  tan𝛽𝛽 = 1
√3

  and sec𝛽𝛽 = 2
√3

  M1 

Thus, no collision occurs for any value of   𝛼𝛼 if  ℎ > 8𝑟𝑟
√3

   *A1 (6) 

 

  



10.  (i)   

   G1 

A Resolving vertically for the upper cube  𝑅𝑅 = 𝜌𝜌𝑎𝑎3𝑔𝑔 

B Taking moments for the upper cube about X  𝑃𝑃ℎ = 𝑅𝑅𝑅𝑅 

C Resolving horizontally for the upper cube  𝑃𝑃 = 𝐹𝐹 

     M1 A1 

D Resolving vertically for the lower cube    𝑅𝑅′ = 𝑅𝑅 + 𝜌𝜌𝜌𝜌 

E Taking moments for the lower cube about Y  𝑅𝑅′𝑦𝑦 = 𝐹𝐹 + 𝑅𝑅𝑅𝑅 

F Resolving horizontally for the lower cube  𝐹𝐹 = 𝐹𝐹′ 

     M1 A1 

Combining A and B  𝑥𝑥 = 𝑃𝑃ℎ
𝜌𝜌𝑎𝑎3𝑔𝑔

  which is the second requirement. B1 

Combining A and D (or resolving vertically for the whole system)  𝑅𝑅′ = 𝜌𝜌𝜌𝜌(1 + 𝑎𝑎3) 

Combining this with E and C   𝜌𝜌𝜌𝜌(1 + 𝑎𝑎3)𝑦𝑦 = 𝑃𝑃 + 𝑃𝑃ℎ 

which gives  𝑦𝑦 = 𝑃𝑃(1+ℎ)
(1+𝑎𝑎3)𝜌𝜌𝜌𝜌

  as required.  M1 *A1 (8) 

(ii)  The limiting friction for 𝐹𝐹 = 𝜇𝜇𝜇𝜇  whereas for 𝐹𝐹′ = 𝜇𝜇𝑅𝑅′ = 𝜇𝜇𝜇𝜇 + 𝜇𝜇𝜇𝜇𝜇𝜇 > 𝜇𝜇𝜇𝜇 

Given that in equilibrium   𝐹𝐹 = 𝐹𝐹′ = 𝑃𝑃 ,  as  𝑃𝑃  increases,   𝐹𝐹 will attain its limiting value first and 
hence the upper cube will slip on the lower cube. E1 (1) 

 

 

 



(iii)  For  𝑎𝑎 = 1  the upper cube slips on the lower cube if  𝑃𝑃 = 𝜇𝜇𝜇𝜇𝜇𝜇  , B1 

𝑦𝑦 = 1
2

   when  𝑃𝑃 = 𝜌𝜌𝜌𝜌
1+ℎ

 

and  𝑥𝑥 = 1
2

  when 𝑃𝑃 = 𝜌𝜌𝜌𝜌
2ℎ

  and as  ℎ < 1 , 2ℎ < 1 + ℎ , so  𝜌𝜌𝜌𝜌
2ℎ

> 𝜌𝜌𝜌𝜌
1+ℎ

 M1 

Thus equilibrium is broken either by the upper cube slipping if  𝜇𝜇𝜇𝜇𝜇𝜇 < 𝜌𝜌𝜌𝜌
1+ℎ

  or by both toppling 

together if 𝜇𝜇𝜇𝜇𝜇𝜇 > 𝜌𝜌𝜌𝜌
1+ℎ

        M1 

That is upper slips if  𝜇𝜇(1 + ℎ) < 1  or both topple if   𝜇𝜇(1 + ℎ) > 1  as required. *A1 (4) 

(iv)   For  𝑎𝑎 < 1  and no slipping occurring, 

 𝑦𝑦 = 1
2

   when  𝑃𝑃 = 𝜌𝜌𝜌𝜌�1+𝑎𝑎3�
2(1+ℎ)    B1 

and  𝑥𝑥 = 1
2
𝑎𝑎  when  𝑃𝑃 = 𝜌𝜌𝜌𝜌𝑎𝑎4

2ℎ
   B1 

So equilibrium will be broken by the upper cube toppling if   𝜌𝜌𝜌𝜌𝑎𝑎
4

2ℎ
< 𝜌𝜌𝜌𝜌�1+𝑎𝑎3�

2(1+ℎ)  

That is if  (1 + ℎ)𝑎𝑎4 < ℎ(1 + 𝑎𝑎3)  , which can be rearranged to ℎ�1 + 𝑎𝑎3(1 − 𝑎𝑎)� > 𝑎𝑎4 E1 (3) 

(v)  If  𝑎𝑎 = 1
2

 , for (iv) to occur  ℎ > 1
17

  .  B1 

  We also require  ℎ < 𝑎𝑎  and, in addition,  𝜌𝜌𝜌𝜌𝑎𝑎
4

2ℎ
< 𝜇𝜇𝜇𝜇𝜇𝜇𝑎𝑎3  so that the top cube doesn’t slip. M1 

Thus,  ℎ𝜇𝜇 > 1
4

  .  A1 

 E.G.  ℎ = 3
8

  ,  𝜇𝜇 = 3
4

   (choosing ℎ larger than  1
4

  to enable a feasible value of 𝜇𝜇 to be chosen.)  

B1 (4) 

  



11.  (i) 

𝑟𝑟 �2𝑛𝑛
𝑟𝑟 � =

(2𝑛𝑛)!
(2𝑛𝑛 − 𝑟𝑟)! (𝑟𝑟 − 1)!

= (2𝑛𝑛 − 𝑟𝑟 + 1)
(2𝑛𝑛)!

(2𝑛𝑛 − 𝑟𝑟 + 1)! (𝑟𝑟 − 1)!
= (2𝑛𝑛 − 𝑟𝑟 + 1) � 2𝑛𝑛

2𝑛𝑛 + 1 − 𝑟𝑟� 

  M1    M1    *A1 (3) 

So 

�𝑟𝑟�2𝑛𝑛
𝑟𝑟 � = �𝑟𝑟�2𝑛𝑛

𝑟𝑟 �+ � 𝑟𝑟�2𝑛𝑛
𝑟𝑟 �

2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

𝑛𝑛

𝑟𝑟=1

2𝑛𝑛

𝑟𝑟=0

 

      M1 

= �(2𝑛𝑛 − 𝑟𝑟 + 1) � 2𝑛𝑛
2𝑛𝑛 + 1 − 𝑟𝑟� + � 𝑟𝑟�2𝑛𝑛

𝑟𝑟 �
2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

𝑛𝑛

𝑟𝑟=1

 

      M1 

= � 𝑡𝑡�2𝑛𝑛
𝑡𝑡 �

2𝑛𝑛

𝑡𝑡=𝑛𝑛+1

+ � 𝑟𝑟�2𝑛𝑛
𝑟𝑟 �

2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

 

by changing the index in the first summation to  𝑡𝑡 = 2𝑛𝑛 − 𝑟𝑟 + 1   M1 A1 

= 2 � 𝑟𝑟�2𝑛𝑛
𝑟𝑟 �

2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

 

       *A1 (5) 

(ii) 

𝐸𝐸(𝑋𝑋) = 2 � 𝑟𝑟�2𝑛𝑛
𝑟𝑟 � �

1
2
�
2𝑛𝑛2𝑛𝑛

𝑟𝑟=𝑛𝑛+1

+ 𝑛𝑛 �2𝑛𝑛
𝑛𝑛 ��

1
2
�
2𝑛𝑛

 

      M1 A1 

= �𝑟𝑟�2𝑛𝑛
𝑟𝑟 � �

1
2
�
2𝑛𝑛

+ 𝑛𝑛 �2𝑛𝑛
𝑛𝑛 ��

1
2
�
2𝑛𝑛2𝑛𝑛

𝑟𝑟=0

 

using the result of (i)    M1 A1 

But,  

�𝑟𝑟�2𝑛𝑛
𝑟𝑟 � �

1
2
�
2𝑛𝑛2𝑛𝑛

𝑟𝑟=0

 

is the expectation of a 𝐵𝐵𝐵𝐵 �2𝑛𝑛, 1
2
� random variable and so = 2𝑛𝑛 × 1

2
= 𝑛𝑛  , or using the second 

result given in the stem M1 A1 

Thus    𝐸𝐸(𝑋𝑋) = 𝑛𝑛 + 𝑛𝑛 �2𝑛𝑛
𝑛𝑛 � �

1
2
�
2𝑛𝑛

= 𝑛𝑛 �1 + �1
2
�
2𝑛𝑛
�2𝑛𝑛
𝑛𝑛 �� 

as required.     *A1 (7) 



(iii) 

�1
2�

2𝑛𝑛+2
�2𝑛𝑛 + 2
𝑛𝑛 + 1 �

�1
2�

2𝑛𝑛
�2𝑛𝑛
𝑛𝑛 �

=
1

22
(2𝑛𝑛 + 2)!

(𝑛𝑛 + 1)! (𝑛𝑛 + 1)!
𝑛𝑛!𝑛𝑛!
(2𝑛𝑛)!

=
(2𝑛𝑛 + 2)(2𝑛𝑛 + 1)
22(𝑛𝑛 + 1)(𝑛𝑛 + 1) =

2𝑛𝑛 + 1
2(𝑛𝑛 + 1) < 1 

  M1   A1 

and so   �1
2
�
2𝑛𝑛

 �2𝑛𝑛
𝑛𝑛 � decreases as  𝑛𝑛  increases.   E1 (3) 

(iv)  The expected profit per pound paid  =
𝑛𝑛�1+�12�

2𝑛𝑛
�2𝑛𝑛𝑛𝑛 ��−𝑛𝑛

𝑛𝑛
= �1

2
�
2𝑛𝑛
�2𝑛𝑛
𝑛𝑛 � M1 

So, by the result of (iii), choose  𝑛𝑛 = 1.   A1 (2) 

(If winnings not profit, then logic is identical bar plus 1.  Either permissible) 

  



12.  (i)   

 

𝑂𝑂𝑂𝑂 = 1 ,  𝑂𝑂𝑂𝑂 = 𝑟𝑟 , so  𝐴𝐴𝐴𝐴 = √𝑟𝑟2 − 1   and therefore 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑂𝑂𝑂𝑂𝑂𝑂 =  1
2
√𝑟𝑟2 − 1  

Also,  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐵𝐵𝐵𝐵𝐵𝐵 = 𝐷𝐷𝐷𝐷𝐷𝐷 = cos−1 1
𝑟𝑟
   so  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐶𝐶𝐶𝐶𝐶𝐶 = 1

4
𝜋𝜋𝑟𝑟2 − 2 × 1

2
𝑟𝑟2 cos−1 1

𝑟𝑟
  M1 M1 

Thus, 𝑃𝑃(𝑅𝑅 ≤ 𝑟𝑟) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = √𝑟𝑟2 − 1 + 1
4
𝜋𝜋𝑟𝑟2 − 𝑟𝑟2 cos−1 𝑟𝑟−1 when  1 ≤ 𝑟𝑟 ≤ √2  *A1 

 

𝑃𝑃(𝑅𝑅 ≤ 𝑟𝑟) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑂𝑂𝑂𝑂𝑂𝑂 = 1
4
𝜋𝜋𝑟𝑟2  when  0 ≤ 𝑟𝑟 ≤ 1  B1 (4) 

(ii)  If the pdf of R is  𝑓𝑓(𝑟𝑟) , then differentiating, 

𝑓𝑓(𝑟𝑟) =
1
2
𝜋𝜋𝜋𝜋 

for  0 ≤ 𝑟𝑟 ≤ 1 , 

and using  
𝑑𝑑
𝑑𝑑𝑑𝑑

(cos−1 𝑥𝑥−1) = −
1

√1 − 𝑥𝑥−2
×−𝑥𝑥−2 =

1
𝑥𝑥√𝑥𝑥2 − 1

 

      B1 

 

𝑓𝑓(𝑟𝑟) =
𝑟𝑟

√𝑟𝑟2 − 1
+

1
2
𝜋𝜋𝜋𝜋 − 2𝑟𝑟 cos−1 𝑟𝑟−1 −

𝑟𝑟
√𝑟𝑟2 − 1

=
1
2
𝜋𝜋𝜋𝜋 − 2𝑟𝑟 cos−1 𝑟𝑟−1 



for  1 ≤ 𝑟𝑟 ≤ √2  .    M1 A1 (3) 

Thus  

𝐸𝐸(𝑅𝑅) = �
1
2
𝜋𝜋𝑟𝑟2 𝑑𝑑𝑑𝑑 + �

1
2
𝜋𝜋𝑟𝑟2 − 2𝑟𝑟2 cos−1 𝑟𝑟−1 𝑑𝑑𝑑𝑑

√2

1

1

0
 

      M1 A1ft 

= �
1
6
𝜋𝜋𝑟𝑟3�

0

√2
− �

2
3
𝑟𝑟3 cos−1 𝑟𝑟−1 �

1

√2
+ �

2
3
𝑟𝑟3

1
𝑟𝑟√𝑟𝑟2 − 1

𝑑𝑑𝑑𝑑
√2

1
 

      M1 A1 

=
𝜋𝜋√2

3
−
𝜋𝜋√2

3
+ �

2
3
𝑟𝑟2

1
√𝑟𝑟2 − 1

𝑑𝑑𝑑𝑑
√2

1
 

as  required.     *A1 (5) 

(iii) 

Let  

𝐼𝐼 = �
𝑟𝑟2

√𝑟𝑟2 − 1
𝑑𝑑𝑑𝑑 

Then 

𝐼𝐼 = �𝑟𝑟
𝑟𝑟

√𝑟𝑟2 − 1
𝑑𝑑𝑑𝑑 = 𝑟𝑟�𝑟𝑟2 − 1 −��𝑟𝑟2 − 1 𝑑𝑑𝑑𝑑 = 𝑟𝑟�𝑟𝑟2 − 1 −�

𝑟𝑟2 − 1
√𝑟𝑟2 − 1

𝑑𝑑𝑑𝑑 

      M1   M1 

= 𝑟𝑟�𝑟𝑟2 − 1 −�
𝑟𝑟2

√𝑟𝑟2 − 1
𝑑𝑑𝑑𝑑 + �

1
√𝑟𝑟2 − 1

𝑑𝑑𝑑𝑑 = 𝑟𝑟�𝑟𝑟2 − 1 − 𝐼𝐼 + cosh−1 𝑟𝑟 + 𝑐𝑐 

     M1    M1 

So 

𝐼𝐼 =
1
2
�𝑟𝑟�𝑟𝑟2 − 1 + cosh−1 𝑟𝑟 + 𝑐𝑐� =

1
2
�𝑟𝑟�𝑟𝑟2 − 1 + ln �𝑟𝑟 + �𝑟𝑟2 − 1� + 𝑐𝑐� 

      A1 (5) 

Hence 

𝐸𝐸(𝑅𝑅) =
2
3

×
1
2

× �𝑟𝑟�𝑟𝑟2 − 1 + ln �𝑟𝑟 + �𝑟𝑟2 − 1��
1

√2
=

1
3 �√

2 + ln�√2 + 1�� 

     M1 A1ft   *A1 (3) 
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