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STEP 2 Introduction

Many candidates produced good solutions to the questions, with the majority of candidates
opting to focus on the pure questions of the paper. Candidates demonstrated very good
ability, particularly in the area of manipulating algebra. Many candidates produced clear
diagrams which in many cases meant that they were more successful in their attempts at
their questions than those who did not do so. The paper also contained a number of places
where the answer to be reached was given in the question. In such cases, candidates must
be careful to ensure that they provide sufficient evidence of the method used to reach the
result in order to gain full credit.



Question 1

There were a large number of attempts at this question, with many good answers seen and
many attempting most parts of the question.

Many were able to show that the required formula in part (i) will be satisfied if the stated
sum is satisfied, but many did not explain that the result applies in both directions with
sufficient detail. Of those who failed to show the result in this part the main error was an
incorrect choice of limits when expressing the sums either in sigma notation or as an
arithmetic series.

Candidates generally demonstrated an understanding of what was required for part (ii), but
a significant number did not express their solution in a clear form, for example by finding
just one case or listing the first few without specifying a general relationship. A number of
candidates got confused between squares and square roots and having deduced that the
square root of n is equal to ¢ then concluded that » must be a square number.

In part (iii) most candidates successfully identified the equation that needed to be satisfied,
but were unable to explain clearly why there were no solutions.

Part (iv)(a) was generally completed well, including by candidates who had struggled in
earlier parts of the question. Many good answers to part (iv)(b) were also seen, although a
number of cases did not explicitly identify the relationship that must exist between the
values of N and K.

Most candidates recognised that the result of part (iv)(b) could be used to generate the
further solutions required in part (iv)(c).



Question 2

This question was attempted by approximately three-quarters of the candidates and many
very good solutions were seen.

In part (i) candidates were generally able to find the binomial series expansion, but some did
not give a clear enough statement of the general term. A number of candidates did not
recognize that it would be possible to use the series expansion to establish the integration
result that was required and instead attempted to use integration by parts or to produce a
proof by induction.

Most candidates recognized the way in which part (i) could be applied to answer part (ii) and
this part was generally answered well. A number of candidates forgot to evaluate the
integral before moving on to the next part of the question.

In part (iii) a large number of candidates recognized that the use of partial fractions would
allow them to apply part (i) again, but many did not then realise that there was a need for
partial fractions to be applied a second time. Almost all candidates who reached the final
integral were able to recognize it and either state the answer or use an appropriate
substitution.



Question 3

This question was attempted by approximately three-quarters of the candidates, but only a
few were able to achieve a fully complete solution to the question. This question was one
where a diagram was very helpful and approaches that were supported by geometrical
understanding were generally more successful than attempts that relied solely on algebra.

Part (i) was very well done, but candidates who used geometrical arguments generally did
not address cases not covered by their diagram — usually this was the case where the value
of 6 was negative.

Part (ii) was also done well, but some candidates failed to give enough working to support
their answer in (a), which is very important in questions where the answer is given. Similarly,
in (b) a number of candidates did not show clearly how they interpreted their algebraic work
to reach a geometrical description.

Part (iii) was found to be difficult by a large number of candidates. Part (a) was generally
done well, although some care with the algebra and exact trigonometric values was needed.
Many were then unable to identify a relationship between f; and the previously seen
functions and did not reach a correct geometrical description in words. A small number did
well on part (c) and were able to interpret the inverse of function f, geometrically, but very
few reached a fully simplified geometrical transformation.



Question 4

About one third of candidates attempted this question. Many of the attempts struggled to
explain the reasoning sufficiently clearly, often missing one or two important details.

In part (i) most candidates were able to prove that the cosines of the two angles were equal,
but did not justify details such as checking that everything lies in the same plane. The most
problematic part of this part of the question for candidates was (i)(b). The most successful
approach was to use the fact that XB and BY lie on the same line and then use algebra to
calculate the value of A and the ratio. A small number of candidates were able to achieve full
marks with geometric arguments, but most such attempts did not give sufficient justification
to be fully convincing. Candidates often produced successful attempts at (i)(c), although
again some failed to justify elements of the solution fully enough in some parts.

Part (ii) was found to be harder than the rest of the question. The majority who attempted
this part correctly identified the dot product to be considered, but most did not recognize
the symmetry within the three expressions.



Question 5

This was the second most popular question, but many candidates did not recognise the
significance of the domain being used for the functions in this question. This meant that
many applied techniques relevant to functions where the domain is the set of real numbers
and therefore reached incorrect answers.

The first requirement of part (iv) was not affected by this misunderstanding and most
candidates were able to prove the required result successfully, usually by completing the
square.

A number of good solutions were seen, however. Those who completed the square and used
the difference of two squares were often successful in parts (i), (i) and (iii). Some of these
were also able to make progress on the end of part (iv).



Question 6

A large number of attempts at this question were seen and many candidates were able to
produce good solutions.

Part (i) was answered well, although a number of candidates did not select the correct base
case. Several solutions did not give sufficient detail in the proof to gain full credit however.
Since the required form is known, it is important that steps in the solution are shown clearly.

In part (ii) many candidates started by calculating some of the terms and then attempted to
spot a pattern, or match the terms to the desired result. To gain full credit a solution that
showed the form of the general term of the binomial series expansion was required. In a
small number of cases combinatorial coefficients with non-integer arguments were used,
but no explanation was given of the meaning of this notation.

In part (iii) a number of candidates again did not write down the binomial coefficients and
used pattern spotting. In general, candidates who had successfully answered part (ii) were
also successful in part (iii).

Some good solutions to part (iv) were seen, but often there was insufficient detail in the
solutions to gain full credit.



Question 7
While there were many attempts at this question, most did not achieve very high marks.

The sketch of the graph in part (i) needed to be clear that it was two circles each with a
radius of 1, for example by stating that points on the curve must satisfy the equation of one
of the circles, or by marking the centres of the circles and having the correct radius in each
case.

Most candidates were able to reach the required result at the start of part (ii)(a). Candidates
often missed important features of the analysis in the remainder of this part, usually
believing that the conclusions derived from considering the discriminant of the quadraticin
x? was sufficient to analyse the number of roots in each case.

In part (ii)(b) candidates were able to use their results from (ii)(a) to find the maximum value
for y, but many struggled to obtain the correct value for x or incorrectly considered
distances from the x-axis rather than from the y-axis. In

(ii)(c) candidates often struggled to explain their reasoning clearly enough to give a fully
convincing answer. In general candidates were comfortable in using algebra to prove that the
two brackets cannot be negative at the same time and many were able to explain why this
would mean that they must both be positive, but found it difficult to explain the significance
of this in terms of the graph.

In part (ii)(d) candidates often produced a graph that contained some of the features that
had been deduced earlier in the question. Many solutions did not show intersections with
axes or co-ordinates of maximum and minimum points.



Question 8
This question was attempted by approximately half of the candidates.

In part (i) candidates were often able to produce the necessary algebra, but some did not
justify the strictness of the inequality or failed to use a full inductive structure for the proof.
There was a roughly even split between candidates who identified that x, could be used as a
bound in order to apply the given result and those who incorrectly used the fact that y,, <
X,,- When considering the behaviour of (x;,, — y,,) some candidates incorrectly asserted that
the fact that the sequence is bounded below by 0 is sufficient to show that the sequence
tends to 0. Almost all candidates were able to show that this result implies that the two
sequences tend to the same limit.

In part (i) most candidates were able to apply the substitution, but some did not justify the
new values of the limits or comment on the evenness of the integrand. The evaluation of the
final integral was generally done well.



Question 9

About one-third of the candidates attempted this question. In some cases the diagrams that
were drawn showed that candidates had not taken care to fully understand the description
of the situation.

Part (i)(a) was completed well by many candidates, but some did not recognise the need to
use a trigonometric identity to obtain a form which is a function of tan a which is a common
technique in questions of this form.

Part (i)(b) was mostly done well, although most did not score fully on the final deduction,
often not applying the condition that A > 1 correctly and reaching two cases, one of which
they could not rule out.

Very few candidates produced a good solution to part (ii), but those who managed to
identify the correct starting point generally produced good solutions.



Question 10

This question received the fewest attempts, although a good proportion of the attempts that
were made were successful. Many candidates drew clear diagrams in their attempts at this
question.

Part (i) was done fairly well, with most candidates resolving forces successfully. However,
many candidates were not able to justify sufficiently well the situation in equilibrium as
opposed to limiting equilibrium.

In part (ii) many candidates struggled to know how to deal with the force that acts on the
prism and thought instead that it would be acting on the particle.

Those candidates who attempted part (iii) generally did well and many realised how to get
both sides of the required inequality and were able to follow through the required
manipulation.



Question 11

This question received one of the lowest numbers of responses and many of the responses
did not achieve many marks.

In part (i) candidates were generally able to complete the differentiation correctly and
identify the location of the stationary point of the curve. Most were also able to identify the
correct behaviour of the course as x — 0, but several incorrectly believed that the function
also approached 0 as x — co. Some candidates were not able to justify why the maximum
value when taking the function over integers must occur whenn = 2 orn = 3. Many
candidates were however able to explain clearly that the value is greater whenn = 3
compared ton = 2.

Part (ii) proved to be difficult for many candidates, with many incorrectly calculating the
probability that a combined test is found to be negative or omitting the first test when
counting the number of tests required if a group did test positive.

Those candidates who had successfully solved part (ii) were able to produce good solutions
to part (iii) as well. Part (iv) was also answered well, although several candidates did not
justify the exclusion of higher order terms in the expansion of (1 — p)*.



Question 12

This question received one of the lowest numbers of responses and many of the responses
did not achieve many marks.

In both parts of the question candidates often failed to calculate the probabilities that were
needed to start the calculations, although many candidates were able to calculate the
relevant combinatorial factors successfully and showed accurate algebraic manipulation
when using the formulae provided in the question.

Those candidates who reached the final part of the question were able to identify a suitable
approach for comparing the probability of there being one winner with the probability of
there being two winners, although this was not executed correctly in most cases.



STEP MATHEMATICS 2
2024
Mark Scheme



Question Answer Mark
1 i The two sums are
~(n+k)(2c + (n+ k — 1)) and
1
“-nR2c+n+k)+(n—-1
2n(2( )+ (n—1)) a1
Difference simplifies to
1
~(2ck + k* =2n%? -k
5 ( ) M
Two sums are equal if and only if the difference is 0
H 2 — 2
if and only 2n“ + k = 2ck + k A1
[3]
ii If k = 1, require n? = c.
Any value of n is possible. B1
— H 2 _
If k = 2, requiren® =2c+1 M1
n can be any odd value, A1
and ¢ = 22
2 A1
[4]
iii If k = 4, require n? =4c+ 6 B1
RHS has a factor of 2, but not a factor of 4 ... E1
... 80 cannot be a square. E1
[3]
iv If ¢ = 1, require 2n? = k(k + 1):
k=1n=1 B1
k=8n==6 B1

[2]




Question Answer Mark
1 iv b

Since (N, K) is a solution:

2N?2+ K =2K+K?or2N? =K(K + 1) B1

2BN+2K+1)2+ (4N +3K+1) =

18N? + 8K? + 3 + 24NK + 16N + 11K

OR

23N + 2K +1)? =

18N? + 8K2 + 2 + 24NK + 12N + 8K M1

2(4N +3K + 1)+ (4N + 3K + 1)? =

16N? + 9K? + 3 + 24NK + 16N + 12K

OR

(4N + 3K + 1)(4N + 3K +2) =

16N? + 9K2 + 2 + 24NK + 12N + 9K M1

Difference between the two expressions that use = 2N? — K? — K M1

=0, so

N’' = (3N + 2K + 1) is a possible value for n, with K' = (4N + 3K + 1) as

the corresponding value of k. A1
[5]

c Use of recurrence with one of the pairs found in part (iv)(a) M1

k=49,n=35 A1

k =288,n =204 A1
[3]




Question Answer Mark
2 i 1 1 3\ 1
(8+x ) _§<1+§>
1 x> x®  x° N M1
-8 8 64 512
1 i X\ 3k A1
P _1\k(Z
_82( D (2)
k=0 =
Jl i =f112(_1)kxm+3kdx "
o 8+x o 8 23k
k=0
1 (—=1)k xm+3k+1 1 A1
T 8L 23 m+3k+1]
k=0 0
_ (—1)* 1 A1
- 230+ m 4+ 3k + 1
k=0
[5]
ii ( 1)k x2 M1
) dx
23<k+1) 3k+3 o 8+x3
> (—1)* 2 T —2x
dx
23<k+1) <3k 2) J 8+ x3
o (—1)F 4
) J dx
23<k+1) 3k+1 8 + x3
o (—1)F ( 1 2, ¢4 ) A1
— 23003k +3  3k+2 3k+1
3 Jlxz —2x+4d
), 8+x3 *
3 1 x?—=2x+4 M1
", GroaZ—2x+ )
11 A1
=J dx
g X+2
3
=[In(x + 2)]§ =In (E) B1
[5]
iii 722k + 1) _ 24 4 24 M1
Bk+1)Bk+2) 3k+1 3k+2 A1
o (-D* 722k +1) _f124x+24 A1
L0 Bk + DEk+2) Jy 8+
_fl 2(x+8) 2 M1
g x2-2x+4 x+2 * A1
L 2x-1) 18 2 M1
=J 3 +— - dx
o X —2x+4 x“—-2x+4 x+2
= [In(x? — 2x + 4)]} ... M1
— 1\t M1
+ [6\/§arctan (x )]
V3 /1,
— [2In (x + 2)]} A1
A1

=ln3—ln4—21n3+21n2+6\/§-%
=mvV3—1In3

[10]




Question Answer Mark
3 Gradient of NP is —22 (= X)
14+cos@ 1 M1
2 sin (19) cos (19)
_ 2 2
YT 1+2c052(19)—1
2 M1
( (1 0)
=tan(=
2 A1
.. 1 1 [3]
i
3 tanZn+tan79 B1
1—tan1ntan79 M1
tan= (0+ . )
=tan— -
2 2 A1
[3]
ii If the coordinates of P, are (cosy, siny):
1 1 1
f(q1) = tan (Ez/;) = tanz(e + En)
M1
P, is the image of P under rotation anticlockwise through a right angle B1
about 0. B1
[3]
i f2(q) —tan1<9 +ln)
2 2 3 M1
1
3 tan (gn) +q
N 1
1—gtan (gn) A1
_1++3q
V3—g A1
s [3]
i f3(@) = f1i(=q), so M1
1/1
fz(q) = tan§<§n — 9) A1
So the coordinates of P; are (sin8, cos ) M1
P; is the image of P under reflection in y = x A1
[4]
iii P, is the image of P under the following sequence of transformations:
Rotation anticlockwise through in
o 3 M1
Reflectionin y = x
. . 1
Rotation clockwise through — -7 A1l
A point is invariant under this transformation if its image under the
rotation anticlockwise through %n liesontheliney = x
M1
... making an angle of —1”—2 with the positive x-axis
A1

[4]




Question Answer Mark
4 i a b is a linear combination of x and y, so it must lie in the plane 0XY B1
b-x=(xly + |ylx) - x = |x|y - x + |yl|x| M1
If 8 is the angle between x and b, then
oeg o DX _xy+ iyl
|b]x| |b| M1
Similarly,
b-y x-y+Ixllyl
|bllyl ||
so the angle between b and y is also 8. A1
Since x-y + |x||y| > 0, cos & > 0 and so the angle is less than 90° E1
A sketch to indicate why any other bisecting vector is a positive multiple
of this. E1
. _— —_— [6]
! b The vector XB = Ab — x must be parallel to the vector XY =y — x.
For some u:
Ab—x = u(y — x) M1
Alxly + |ylx) —x = u(y — x)
Ayl + p—Dx = (u—AxDy A1
Since x and y are not parallel:
Alyl+ p—1=0
u—Ax[=0 E1
_ 1
lx| + |yl M1
P
x| + |y M1
So B divides XY in the ratio |x|: |y| A1
[6]
i c If OB is perpendicular to XY:
b-(y—x)=0
lx[[y? + |ylx -y — |xly - x = |yllx|> = 0 M1
(yl = IxDdx[lyl +x-y) =0 A1
lx|lyl +x-y>0
So |x| = |y| A1
[3]
ii Let p, g and r be the position vectors of P, Q and R respectively.
The bisecting vector of POQ is |p|lq + |q|p
The bisecting vector of QOR is |q|r + |r|q
If 6 is the angle between these two vectors, then:
osg < UPla+lalp) - (qlr + Irlq)
|lplg +lqlp| |Iqlr + Irlq] M1
_Ipllqlg-r+Iplirllgl* +IqI*p -7 + lqlirip - q
|lplg + 1qlp| |lqIr + Irlq] M1
056 = lql(pllqllr| + Iplq-T+|qlp-T+Ir|p-q)
lIplg +1qlp| |IqIr + Irlq]| A1
Ipligllr| + Iplg T +qlp T + |r|p - q is symmetrical in p, q and r. E1
All other factors are strictly positive, so the sign will be the same for all
three angles (and so the angles are either all acute, all right angles or all
obtuse). E1

[5]




Question Answer Mark
5 i i) =({t+3)2+2=F (t+3) M1
Since t » t + 3 is a one-to-one correspondence on Z, the functions have
the same range. A1
[2]
i If there is a value that lies in both the range of f; and g,, then there are
integers s and t such that:
fi6)=(G+3)2+2=g()=(t—-1*+4 M1
(s+3)2—-(t—1)2=2 A1
which is not possible for any integers s and t. E1
[3]
iii For any value that lies in both the range of f, and g,, there are integers s
and t such that:
fo(8)=(s=1)" =7 =go(t) = (t =2)* =2 M1
(s—1D*—=(t—-2)%=5
(s+t—3)(s—t+1)=5 A1
s+t—3=1
s—t+1=5
has solutions = 4,t =0 M1
s+t—3=-1
s—t+1=-5
has solutions = -2,t =4
s+t—3=5
s—t+1=1
has solution s = 4,t = 4
s+t—3=-5
s—t+1=-1
has solutions = -2,t =0 A1
All cases lead to f,(s) = g,(t) = 2, so only 2 lies in the intersection
between the ranges. A1
[5]
iv 4(p* +pq+q°) =@ —-*+3(@ +q)?
p2+pq+q* =+ q9>*—pqg=(p—q)?*+ 3pq sufficient for M1 M1
Therefore p? + pq + g2 = 0 for all real p and q. A1
[2]
f3(s)=s3—-3s24+7s=g;(t) =t3+4t—6
(s—1)3=s3-3s2+3s—-1,s0
(s—1)3—t3+4s—4t=-7 M1
—1-0)((s—-1?+(-Dt+tH+4(s-1-t)=-11 M1
5—1-0((s—-1?*+(-Dt+t2+4)=-11 A1
By the result at the start of part (iv): M1
(=12 +(-Dt+t>2+4)>4 A1
so the product can only be =1 x 11
We have s =t and so
s?2—2s+1+s?—s+s>+4=11 M1
3s2—-35s—6=0,503(s —2)(s +1) =0,
givings=t=2ors=t=-1 A1
So the intersection is {f;(—1), f3(2)} = {—11,10} A1

[8]




Question Answer Mark
6 i Forn=0:
1.0
B1
Assume that the result is true for n = k:
1 2k
T = ﬁ( k )
_Z(k-l-l)—l 1 (Zk)
k+1 — Z(k + 1) 22k k M1
o 1 2k+1 (2k)!
1722k 2k +1) (kD2
ro_ 2k +1  (2k)! 2k +2
k17 22k 2(k+1) (kD2 2(k + 1) M1
T 1 2k + 1)!
k+1 = ’
+ 22(k+1) ((k+ 1)!)2
1 2(k+1)
Tk_zz(k+1)( k+1 ) A1
Hence, by induction:
1 2n
=52 () A1
[5]
i ~( 1y/ 3 2r— 1\ (=17
o =(=3)(-3)(-72) w1
A1
B ( 1)( 3) 2r =1 =1\ (-1
1= \72)\72 2 r—1)! M1
Therefore,
2r—1\ —1
om0 3
2r—1
ar = o Ar-1 E1
Slnce ao = 1 = To, B1
a.=T,forr=0,1,2,- A1
[6]
iii
(E._. er—-1) @r+ 1))
2 2 2 2
b, = - M1
So, X =2r +1 A1
Correctly argued for general terms E1
2r+1 op
by = —5— () A1

r

[4]




Question Answer Mark
6 v 1-x)"1=22,x" B1
A+x+x®+-)(ag+ax+a,x*>+ ) = (bg + byx + byx* + ) B1
The term in x™ on the LHS is: M1
1aux™+x-a, x" 1+ +x"-qq A1
Therefore,
by = Zr-oar
as required. A1

[5]




Question Answer Mark
7 i Circles with centres at (1,0) and (-1,0), B1
both with radius 1 B1
[2]
ii y = k meets the curve when
1
(x?2+k?=2x)(x*> + k? + 2x) = -
(x%2 + k? = 2x)(x? + k? 4+ 2x) = (x? + k?)? — 4x? M1
So
1
24 k22 _g4x2—— =9
(x* + k) X 16 1
4 21,2 _ 4 _
x*+2x“(k“—-2)+k 16_0 A1
65
2 2 _ 2 2 _ 7
(x% + k2 —2)2 + 4k =0 M1
65
x2=2-k?*+ |——4k?
16 A1l
If k? > 2 there will be no roots
If k? = 2 there will be two roots
B1
If k2 < :—i, the smaller of the two values of x? is
65
2—k%?— |——4k?
16 M1
2—k?— /i—z—élkz = 0 when
65
2—k?)? = — — 4k?
( 1) Te
k*=—
16 .
So there will be three roots if k* = = A1
4
There will be two roots if 0 < k? %
There will be four roots if = < k2 < 22 A1
4 64
_ [8]
I Greatest possible y-coordinate is when k? = Z—i M1
Sox?=2-k?=2<1
So these points are closer to the y-axis than those on C; A1
[2]
i If both expressions are negative, then the distance from (x, y) to the
points (1,0) and (—1,0) would both be less than 1. E1
But the shortest distance between (1,0) and (—1,0) is 2, so this is not
possible.
Therefore, it is not possible for both expressions to be negative. E1
Since the product of the two expression is positive and they are not both
negative, they must both be positive.
Therefore, the distance between the point (x, y) and each of the points
(1,0) and (—1,0) must be greater than 1, so the curve C, lies entirely
outside the circle C; E1

[3]




Question Answer Mark
7 ii d Continuous curve outside the two circles of C; G1
Symmetrical under reflection in x and y axes. G1
Intersections with x-axis at x = + %\/ 8 +V65 G1
Intersections with y-axis at y = i% G1
. .. 1 1
Maxima and minima at (igx/@, ig\/ﬁ) G1
[5]




Question Answer Mark
H 2
8 I (\/x—n - \/E) = 2a(xp, Yn) — 29 (Xn, )
= 2(xn+1 - Yn+1) M1
SO Xp41—Yne1 =0forn >0 A1
Vo < X IS given
Suppose that y;, < xp:
2
(Vxk —/yx)” > 0and s0 x441 — Y41 >0
Hence, by induction, y, < x,, forn = 0 A1
[3]
Yn+1=\/x—n\/%>\/ﬁ Yn = Yn B1
1 1
Xni1 =5 ) <5 (xp +xp) = xp
2 2 B1
yn < xp < xo forn > 0, so the sequence is bounded above. B1
As shown above the sequence is increasing, so the result given at the
start of the question applies.
There is a value M such thaty, - M asn - o B1
- [4]
2
Xn+1 — Vn+1 = E(\/x—n - \/E)
1
<5 (o =7 (T + )
M1
1
= E (xn - yn)
Xp+1 — Va1 = %(\/x—n — \/ﬁ)z > 0, since x,, # y,, for any value of n.
Therefore 0 < X1 = Yne1 <5 (tn = ) A1
Hence x, —y, 2 0asn - o E1
Sox, >Masn— E1

[4]




Question Answer Mark
8 i & _2(1+29
dx 2 x? M1
Limits:
Asx - 0,t > —
Asx > oo, t > E1
1 1 P2 1
Z 23 (21 —_— (,4 2 2,2 2,2
G +4(x x) 2z &+ 7 +a7x" +p%q%) 1
1
= m(xz +p?)(x* +q%)
1 Pay2 1
pq + Z(x - 7) = 2z &" +2pax® +p*q*)
= (2 +p)?
2
4x A1
So the integral becomes:
1
ZJ dx =21(p,q)
2 2 2 2
3 V&2 +p)(? +q?) A
Since the original integrand was an even function it is also equal to
21(a(p,9), 9(0, 9)) Eq
[6]
@ 1
I(x ,y)=I(x,y)=-~-=f ———dx
0,0 1)1 0 x2 + M2 M
1 x\17
= [M arctan (M)]O A1
-
2M A1

[3]




Question Answer Mark
9 i a Horizontal displacement = d when
d
" vcosa B1
Vertical displacement at this time is
00 (o) -5 (ramra)
s =vsina -=
vcosa 2\vcosa B1
gd®
dtana 2vzsec a>0 M1
1
tana _ﬂ(l +tan?a) > 0
tana —2Atana +1<0 M1
(tana —1)2-22+1<0
(tana —2)?2 < A% -1 A1
A2 —1>(tana—21)?>0,s01%2>1 E1
[6]
b Horizontal displacement = 2d when
2
" vcosa M1
Vertical displacement at this time is
_ 2d g( 2d \*
s=vsma< )——( ) < -2d
vcosa 2\vcosa
2
2tana _Z(l +tan?a) < -2
A1
tana —Atana—1+1>0
( YN
tana——) -——=14+1>0
2 4 M1
Qtana —1)?2 > A2 +4(1—-1) A1
Since 1 > 1, (2tana — 1)? > A2 M1
4tan’a —4Atana > 0
tana (tana — 1) >0 M1
Since tana > 0, (tana — 4) > 0 and so
tana > 1> 1
Therefore a > 45° A1
[7]
i To satisfy tan? a« — 2Atana + 1 < 0, requires
24— V42?2 — 4 24+ V422 — 4
— <tana < —
To satisfy tan?a — Atana — 1 + 1 > 0, requires
A2+4(1-1)
tana > B1
which is possible provided that
20+ V412 -4 A+J22+4(1-1)
>
2 M1
A+2J22—1>J22+41—4 A1
Since both sides of the inequality are positive this is equivalent to: E1
P44l —4<224+402—1)+40/22 -1 M1
1<A+/24%2-1 A1
Since 1 > 1 and VA2 — 1 > 0 this must be true A1

[7]
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10

Diagram showing the wedge and particle on the plane:
There are 4 relevant forces.
Weight acting on the particle.

Horizontal force P acting on the wedge. B1
Normal force and friction acting on the particle. B1
[2]
i Resolving forces on the particle (if in equilibrium):
N =mgcosa
F=mgsina
OR M1
N sin(a) = F cos(a) (resolving horizontally) A1
F<uN,sotana <pu
(so if u < tan a the system cannot be in equilibrium) E1
[3]
i For the whole system:
P=(M+m)a
OR for the prism
P+ Fcosa— Nsina = Ma B1
For the particle horizontally and vertically:
Nsina — F cosa = ma
Ncosa + Fsina = mg
OR
N —mgcosa = masina B1
mgsina —F = macosa B1
So
Nsinacosa + F sin? a = mg sina
N sina cosa — F cos? @ = macosa
F = mgsina — macosa M1
. Pcosa m .
F—m(gsma' M+m)—m+M((M+m)gsma Pcosa) A1
Also:
Nsin?a — Fsina cosa = masina
N cos?a + Fsinacosa = mg cosa M1
N = (Psina+ )— m ((M+m) cosa+Psina)
-m M+m geosa T m+M g A1
[7]
iii For equilibrium, require:
—uN < F < uN M1
—tand ((M + m)gcosa + Psina) < (M + m)gsina — P cosa
<tanA ((M +m)g cosa + P sin a)
So
—tanA((M + m)g + Ptana) < (M + m)gtana — P
(M +m)gtana — P <tand((M + m)g + Ptana) M1
Therefore: M1
P(1—tanatanl) < (M + m)g(tana + tan 1)
(M +m)g(tana —tanid) < P(1 +tanatanl) A1
Since 1 < %n, and a < %, tanatand < 1 and so
1—tanatand >0 E1
p < (M +m)g(tana + tan 1)
- (1 —tanatanA)
(M +m)g(tana — tan 1) M1
(1+tanatanl) - A1
(M +m)gtan(a — 1) <P < (M +m)gtan(a + 1) E1

[8]
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11 i 1 _ llnx
xx = ex M1
d ( 1) 1—Inx 1
— X | = X
dx \* xz
A1
=0whenx=e¢e A1
1 1
~Inx >0asx »>o0,80xx>1asx > o B1
X 1
1 = 1
Letx =, thenxx=—3—>0asN o /x>0 B1
Graph showing the above and no additional turning points.
1
Both coordinates of turning point (e, eE) must be shown. G1
— [6]
Since the graph is decreasing for x > e, 33 > nnforn > 3 E1
1 1 1 1
22 = 44 and so is less than 33, so the maximum value is 33. E1
[2]
i For each group:
P(one test) = (1 — p)* M1
Expected number of tests is:
1-(-pf+k+D( -0 -p)F) M1
Expected number of tests in total:
r(k +1—-k(1- p)k)
1
_ 2 _1_mk
_N(1+k a p)) A
: : [3]
iii 1 & 1 Nk
N(1+k a p))SN=>kS(1 ») "1
1 kl
— < kk
1—p~ A1
By part (i) the maximum value arises when k = 3 M1
1
and — = 33
1-p
1
p=1-373 A1
1 3 3_%
4 4
3\~ 64 13
3 ;<03 1<y M1
Sop—->0andp >~ A1l
[6]
iv The term in p™ in the expansion of (1 — p)¥ is
k(k—1)..(k—n+1)
p (=p)"
k(k—1)..(k—n+1)  (kp)"
n! p < n! M1
If kp is small:
1 1
N(l +E—(1—p)k> ~ N(l +E_ 1+kp>
1
=N+ k) A1
Ifp=0.01and k = 10:
% +10(0.01) = % so the expected number of tests is approximately 20%
of N. E1

[3]
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12 i (n—a)
P(Value greater than a) = - M1
X is the event that Ada is given number a and all other players are given
a number greater than a.
P(X) _ 1 (TL — a)k—l
n n A1
If k = 4:
n-— n-1
) 1 n —a\3 1
P(Ada wins) = Z— ) =—42(n—a)3
—n n n* & M1
a=1 a=1
n-1
IV
4
= M1
_(—1)?
T 4n?
But each player has the same probability of winning, so: E1
o (n—1)?
P(There is a winner) = — A1
[6]
ii Let p(a, d) be the probability that Ada is given number a, Bob is given
number a + d + 1 and all others are given numbers in between.
v d =25 () B1
-2n-d-1 1 M1
P(Ada has lowest score and Bob has highest score) = Z z — (—)
d=1 a=1 n
A1
n-2 —-d-
: Z
oma o M1
1 n-2
=—Z 2(n—d—1) _—Z [(n - 1)d? — d?]
nt d=1 M1
m-1Dn-2)(n-1D2n-3) (@n-2)*n-1)>
4 6 4 M1
(n—1)*(n—2)
= ot [22n —3) — 3(n —2)]
_(m=-1)?’(n-2)
- 3
12n A1
There are 2 - (;) = 12 pairs of players and they each have the same
probability of winning. E1
P(T : _(m-1)?’(n-2)
(Two winners) = 3 A1

[9]
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12 i P(Winner with lowest number) in this game is equal to
contd P(Winner with highest number) and is equal to the probability of there
being a winner in the game in part (i) E1
. (n—1)° (n—1)*(n-2)
P(Exactly one winner) = 2 - . 2- 3 M
4(n—1)*
n A1
Exactly 2 winners more likely if
nm-1%n-2) 4(n-—1)>2
n3 > n3 M1
n—2>4
So n = 7 is the minimum A1

[5]
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